当前位置: X-MOL 学术J. Vac. Sci. Technol. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D-electrode integrated microsieve structure as a rapid and cost-effective single neuron detector
Journal of Vacuum Science & Technology B ( IF 1.4 ) Pub Date : 2020-11-01 , DOI: 10.1116/6.0000518
Yagmur Demircan Yalcin 1 , Regina Luttge 1
Affiliation  

Using integrated silicon micromachining and thin-film technology, the fabrication of electrically functionalized microsieves for the study of 3D neuronal cell networks in vitro was a major challenge and is still very expensive at the current scale of device production, which is limited to fundamental research. Also, thin-film sidewall electrodes are in contact with the neurons and the microsieves need to be rigorously cleaned prior to reuse or the expensively integrated culture platform must be discarded. To simplify such microsieve studies on neuronal cell networks, we started analysis by optical techniques on polymer microsieves, which also proved to be valuable in our previous studies. Knowing the distribution of cells throughout the pores of the sieve, however, will enhance statistical relevance of these biological experiments. Hence, here, we present the feasibility study on a new technical concept for a cost-effective, fast, and reusable electrical platform to monitor the cell placement distribution in single-use 3D microsieves by a hybrid assembly approach in a label-free manner. The proposed system, having 3D electrodes integrated with microsieves, was compared with the thin-film sidewall electrodes that touch cells in a 3D simulation platform. Although a relatively thick and tapered insulating layer exists between cells and electrodes in the proposed 3D pluggable system, an impedance variation ratio of 3.4% on a measurable based impedance of ∼59 kΩ was obtained in these simulations and is very similar to the values for sidewall electrodes.

中文翻译:

3D 电极集成微筛结构作为快速且具有成本效益的单神经元检测器

使用集成的硅微加工和薄膜技术,制造用于体外 3D 神经元细胞网络研究的电功能化微筛是一项重大挑战,并且在目前仅限于基础研究的设备生产规模下仍然非常昂贵。此外,薄膜侧壁电极与神经元接触,微筛在重新使用之前需要严格清洁,否则必须丢弃昂贵的集成培养平台。为了简化对神经元细胞网络的这种微筛研究,我们开始通过聚合物微筛上的光学技术进行分析,这在我们之前的研究中也证明是有价值的。然而,了解细胞在整个筛孔中的分布将增强这些生物实验的统计相关性。因此,这里,我们展示了一种新技术概念的可行性研究,该技术概念具有成本效益、快速且可重复使用的电气平台,可通过混合组装方法以无标签方式监测一次性 3D 微筛中的细胞放置分布。所提出的系统具有与微筛集成的 3D 电极,在 3D 模拟平台中与触摸单元的薄膜侧壁电极进行了比较。尽管在所提出的 3D 可插拔系统中,电池和电极之间存在相对较厚的锥形绝缘层,但在这些模拟中获得了 3.4% 的阻抗变化率,基于可测量的阻抗约为 59 kΩ,与侧壁的值非常相似电极。和可重复使用的电气平台,通过混合组装方法以无标签方式监测一次性 3D 微筛中的细胞放置分布。所提出的系统具有与微筛集成的 3D 电极,在 3D 模拟平台中与触摸单元的薄膜侧壁电极进行了比较。尽管在所提出的 3D 可插拔系统中,电池和电极之间存在相对较厚的锥形绝缘层,但在这些模拟中获得了 3.4% 的阻抗变化率,基于可测量的阻抗约为 59 kΩ,与侧壁的值非常相似电极。和可重复使用的电气平台,通过混合组装方法以无标签方式监测一次性 3D 微筛中的细胞放置分布。所提出的系统具有与微筛集成的 3D 电极,在 3D 模拟平台中与触摸单元的薄膜侧壁电极进行了比较。尽管在所提出的 3D 可插拔系统中,电池和电极之间存在相对较厚的锥形绝缘层,但在这些模拟中获得了 3.4% 的阻抗变化率,基于可测量的阻抗约为 59 kΩ,与侧壁的值非常相似电极。在 3D 模拟平台中与触摸单元的薄膜侧壁电极进行了比较。尽管在所提出的 3D 可插拔系统中,电池和电极之间存在相对较厚的锥形绝缘层,但在这些模拟中获得了 3.4% 的阻抗变化率,基于可测量的阻抗约为 59 kΩ,与侧壁的值非常相似电极。与在 3D 模拟平台中触摸单元的薄膜侧壁电极进行了比较。尽管在所提出的 3D 可插拔系统中,电池和电极之间存在相对较厚的锥形绝缘层,但在这些模拟中获得了 3.4% 的阻抗变化率,基于可测量的阻抗约为 59 kΩ,与侧壁的值非常相似电极。
更新日期:2020-11-01
down
wechat
bug