当前位置: X-MOL 学术Nano-Struct. Nano-Objects › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of process variable on synthesis and characterization of amorphous silica nanoparticles using sodium silicate solutions as precursor by sol–gel method
Nano-Structures & Nano-Objects Pub Date : 2020-12-04 , DOI: 10.1016/j.nanoso.2020.100625
Seun Samuel Owoeye , Segun Michael Abegunde , Babatunde Oji

The recent rapid urban growth has resulted into high demand for virgin materials thus causing more accumulation of solid wastes (urban mines). As a result, efforts are now geared towards urban mining approach based on re-using and recycling in order to ensure sustainability and environmental protection. In this regard, the present work synthesized pure amorphous silica nanoparticles using sodium silicate solutions produced from recycled glass powder under varying process parameter. In this work, the process variable used was NaOH concentration (3.0, 4.0 and 5.0 mol/L). 20 g of glass powder was reacted with 160 ml of 3.0, 4.0 and 5.0 mol/L NaOH solutions respectively in a 250 ml Erlenmeyer flask placed on a heating plate connected with a reflux condenser to maintain the volume of the mixture and stirred continuously at a speed of 60 rpm for 180 mins under reaction temperature of 200 °C. The solutions were filtered to obtain a sodium silicate solution (SSLS) samples. Hydrochloric acid (3 mol/L) was added gently into the respective SSLS while continuously stirred to obtain a white gel mixture. The gel was left to age for 18 h at room temperature (25 °C), then filtered and washed repeatedly using deionized water until a neutral pH is reached; then dried in an electric-powered oven at 80 °C for 12 h to obtain highly pure white silica powder. The results showed that the nano-size range between 0.025 μm (25 nm) to 0.067 μm (67 nm).



中文翻译:

工艺变量对以硅酸钠溶液为前体的溶胶-凝胶法合成无定形二氧化硅纳米粒子的影响

最近的城市快速增长导致对原始材料的大量需求,从而导致更多的固体废物(城市矿山)堆积。因此,现在正在努力基于再利用和再循环的城市采矿方法,以确保可持续性和环境保护。在这方面,本工作使用由回收的玻璃粉末在不同的工艺参数下生产的硅酸钠溶液合成了纯无定形二氧化硅纳米粒子。在这项工作中,所使用的过程变量为NaOH浓度(3.0、4.0和5.0 mol / L)。使20克玻璃粉与160毫升3.0、4.0和5反应 将250毫升锥形瓶中的0 mol / L NaOH溶液分别置于与回流冷凝器相连的加热板上以保持混合物的体积,并在200°C的反应温度下以60 rpm的速度连续搅拌180分钟。将溶液过滤以获得硅酸钠溶液(SSLS)样品。在连续搅拌下将盐酸(3 mol / L)缓慢加入各自的SSLS中,得到白色凝胶混合物。将凝胶在室温(25°C)下老化18小时,然后过滤并使用去离子水反复洗涤,直到达到中性pH;然后在80°C的电动烤箱中干燥12小时,以获得高纯度的白色二氧化硅粉末。结果表明,纳米尺寸范围为0.025 将溶液过滤以获得硅酸钠溶液(SSLS)样品。在连续搅拌下将盐酸(3 mol / L)缓慢加入各自的SSLS中,得到白色凝胶混合物。将凝胶在室温(25°C)下老化18小时,然后过滤并使用去离子水反复洗涤,直到达到中性pH;然后在80°C的电动烤箱中干燥12小时,以获得高纯度的白色二氧化硅粉末。结果表明,纳米尺寸范围为0.025 将溶液过滤以获得硅酸钠溶液(SSLS)样品。在连续搅拌下将盐酸(3 mol / L)缓慢加入各自的SSLS中,得到白色凝胶混合物。将凝胶在室温(25°C)下老化18小时,然后过滤并使用去离子水反复洗涤,直到达到中性pH;然后在80°C的电动烤箱中干燥12小时,以获得高纯度的白色二氧化硅粉末。结果表明,纳米尺寸范围为0.025 然后在80°C的电动烤箱中干燥12小时,以获得高纯度的白色二氧化硅粉末。结果表明,纳米尺寸范围为0.025 然后在80°C的电动烤箱中干燥12小时,以获得高纯度的白色二氧化硅粉末。结果表明,纳米尺寸范围为0.025μm(25 nm)至0.067 μm(67nm)。

更新日期:2020-12-04
down
wechat
bug