当前位置: X-MOL 学术Neurobiol. Learn. Mem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Disruption of rat deep cerebellar perineuronal net alters eyeblink conditioning and neuronal electrophysiology
Neurobiology of Learning and Memory ( IF 2.7 ) Pub Date : 2020-12-04 , DOI: 10.1016/j.nlm.2020.107358
Deidre E O'Dell 1 , Bernard G Schreurs 1 , Carrie Smith-Bell 1 , Desheng Wang 1
Affiliation  

The perineuronal net (PNN) is a specialized type of extracellular matrix found in the central nervous system. The PNN forms on fast spiking neurons during postnatal development but the ontogeny of PNN development has yet to be elucidated. By studying the development and prevalence of the PNN in the juvenile and adult rat brain, we may be able to understand the PNN’s role in development and learning and memory. We show that the PNN is fully developed in the deep cerebellar nuclei (DCN) of rats by P18. By using enzymatic digestion of the PNN with chondroitinase ABC (ChABC), we are able to study how digestion of the PNN affects cerebellar-dependent eyeblink conditioning in vivo and perform electrophysiological recordings from DCN neurons in vitro. In vivo degradation of the PNN resulted in significant differences in eyeblink conditioning amplitude and area. Female animals in the vehicle group demonstrated higher levels of conditioning as well as significantly higher post-probe conditioned responses compared to males in that group, differences not present in the ChABC group. In vitro, we found that DCN neurons with a disrupted PNN following exposure to ChABC had altered membrane properties, fewer rebound spikes, and decreased intrinsic excitability. Together, this study further elucidates the role of the PNN in cerebellar learning in the DCN and is the first to demonstrate PNN degradation may erase sex differences in delay conditioning.



中文翻译:

大鼠深小脑周围神经网络的破坏改变了眨眼调节和神经元电生理学

神经周围网 (PNN) 是在中枢神经系统中发现的一种特殊类型的细胞外基质。PNN 在出生后发育期间在快速尖峰神经元上形成,但 PNN 发育的个体发育尚未阐明。通过研究 PNN 在幼年和成年大鼠大脑中的发育和流行,我们或许能够了解 PNN 在发育和学习记忆中的作用。我们表明 PNN 在大鼠的深小脑核 (DCN) 中由 P18 完全发育。通过使用软骨素酶 ABC (ChABC) 对 PNN 进行酶消化,我们能够研究 PNN 的消化如何影响体内依赖小脑的眨眼调节,并在体外进行 DCN 神经元的电生理记录。PNN 的体内降解导致眨眼调节幅度和面积的显着差异。与该组中的雄性相比,载体组中的雌性动物表现出更高的调节水平以及显着更高的探查后调节反应,ChABC 组中不存在差异。在体外,我们发现暴露于 ChABC 后 PNN 受损的 DCN 神经元具有改变的膜特性、更少的反弹尖峰和降低的内在兴奋性。总之,这项研究进一步阐明了 PNN 在 DCN 中小脑学习中的作用,并且是第一个证明 PNN 退化可以消除延迟条件反射的性别差异的研究。与该组中的雄性相比,载体组中的雌性动物表现出更高的调节水平以及显着更高的探查后调节反应,ChABC 组中不存在差异。在体外,我们发现暴露于 ChABC 后 PNN 受损的 DCN 神经元具有改变的膜特性、更少的反弹尖峰和降低的内在兴奋性。总之,这项研究进一步阐明了 PNN 在 DCN 中小脑学习中的作用,并且是第一个证明 PNN 退化可以消除延迟条件反射的性别差异的研究。与该组中的雄性相比,载体组中的雌性动物表现出更高的调节水平以及显着更高的探查后调节反应,ChABC 组中不存在差异。在体外,我们发现暴露于 ChABC 后 PNN 受损的 DCN 神经元具有改变的膜特性、更少的反弹尖峰和降低的内在兴奋性。总之,这项研究进一步阐明了 PNN 在 DCN 中小脑学习中的作用,并且是第一个证明 PNN 退化可以消除延迟条件反射的性别差异的研究。

更新日期:2020-12-14
down
wechat
bug