当前位置: X-MOL 学术Neurophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In vivo voltage-sensitive dye imaging of mouse cortical activity with mesoscopic optical tomography
Neurophotonics ( IF 5.3 ) Pub Date : 2020-12-01 , DOI: 10.1117/1.nph.7.4.041402
Qinggong Tang 1 , Vassiliy Tsytsarev 2 , Feng Yan 1 , Chen Wang 1 , Reha S. Erzurumlu 2 , Yu Chen 3
Affiliation  

Significance: Cellular layering is a hallmark of the mammalian neocortex with layer and cell type-specific connections within the cortical mantle and subcortical connections. A key challenge in studying circuit function within the neocortex is to understand the spatial and temporal patterns of information flow between different columns and layers. Aim: We aimed to investigate the three-dimensional (3D) layer- and area-specific interactions in mouse cortex in vivo. Approach: We applied a new promising neuroimaging method—fluorescence laminar optical tomography in combination with voltage-sensitive dye imaging (VSDi). VSDi is a powerful technique for interrogating membrane potential dynamics in assemblies of cortical neurons, but it is traditionally used for two-dimensional (2D) imaging. Our mesoscopic technique allows visualization of neuronal activity in a 3D manner with high temporal resolution. Results: We first demonstrated the depth-resolved capability of 3D mesoscopic imaging technology in Thy1-ChR2-YFP transgenic mice. Next, we recorded the long-range functional projections between sensory cortex (S1) and motor cortex (M1) in mice, in vivo, following single whisker deflection. Conclusions: The results show that mesoscopic imaging technique has the potential to investigate the layer-specific neural connectivity in the mouse cortex in vivo. Combination of mesoscopic imaging technique with optogenetic control strategy is a promising platform for determining depth-resolved interactions between cortical circuit elements.

中文翻译:

介观光学层析成像技术对小鼠皮层活动的体内电压敏感染料成像

意义:细胞分层是哺乳动物新皮层的标志,在皮层皮层和皮层下层连接中具有特定于层和细胞类型的连接。研究新皮质内电路功能的关键挑战是了解不同列和层之间信息流的时空格局。目的:我们旨在研究体内小鼠皮质中的三维(3D)层和区域特异性相互作用。方法:我们应用了一种新的有前途的神经成像方法-荧光层流光学层析成像与电压敏感染料成像(VSDi)相结合。VSDi是一种用于询问皮质神经元组件中膜电位动力学的强大技术,但传统上用于二维(2D)成像。我们的介观技术允许以高时间分辨率的3D方式可视化神经元活动。结果:我们首先证明了Thy1-ChR2-YFP转基因小鼠中3D介观成像技术的深度分辨能力。接下来,我们记录了单晶须偏转后的小鼠体内感觉皮层(S1)和运动皮层(M1)之间的远距离功能投影。结论:结果表明,介观成像技术具有研究小鼠皮层体内特定层神经连接的潜力。介观成像技术与光遗传学控制策略的结合是确定皮质回路元件之间深度分辨相互作用的有前途的平台。我们首先在Thy1-ChR2-YFP转基因小鼠中证明了3D介观成像技术的深度分辨能力。接下来,我们记录了单晶须偏转后小鼠体内感觉皮层(S1)和运动皮层(M1)之间的远距离功能投影。结论:结果表明,介观成像技术具有研究小鼠皮层体内特定层神经连接的潜力。介观成像技术与光遗传学控制策略的结合是确定皮质回路元件之间深度分辨相互作用的有前途的平台。我们首先在Thy1-ChR2-YFP转基因小鼠中证明了3D介观成像技术的深度分辨能力。接下来,我们记录了单晶须偏转后的小鼠体内感觉皮层(S1)和运动皮层(M1)之间的远距离功能投影。结论:结果表明,介观成像技术具有研究小鼠皮层体内特定层神经连接的潜力。介观成像技术与光遗传学控制策略的结合是确定皮质回路元件之间深度分辨相互作用的有前途的平台。单晶须偏转之后。结论:结果表明,介观成像技术具有研究小鼠皮层体内特定层神经连接的潜力。介观成像技术与光遗传学控制策略的结合是确定皮质回路元件之间深度分辨相互作用的有前途的平台。单晶须偏转之后。结论:结果表明,介观成像技术具有研究小鼠皮层体内特定层神经连接的潜力。介观成像技术与光遗传学控制策略的结合是确定皮质回路元件之间深度分辨相互作用的有前途的平台。
更新日期:2020-12-02
down
wechat
bug