当前位置: X-MOL 学术Smart Mater. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Finite strain elasticity based cohesive zone model for mechanoluminescent composite interface: Part II. Interface damage characteristics
Smart Materials and Structures ( IF 4.1 ) Pub Date : 2020-12-02 , DOI: 10.1088/1361-665x/abc6b7
S Krishnan , N Katsube , V Sundaresan

The need to estimate the micromechanical properties of elastico-mechanoluminescent (EML) composites was established in Part A of this paper. The particle–matrix interface was identified to be poorly understood towards building accurate EML models and to predict functional life estimates of the EML devices. Towards this, Part A of this paper defined the mechanical behavior of the interface as a softening spring through a bilinear cohesive zone model (CZM). Macroscale stress measurements were combined with material properties to estimate undamaged stiffness of the interface spring ($k_\sigma ^{{\textrm{int}}}$). In Part B of this paper, the damage characteristics of the interface spring are estimated through an experimental approach to complete the CZM. This is achieved by first establishing the finite strain behavior of the macroscopic EML–PDMS composite from uniaxial tensile testing. Secondly, a controlled tear is induced in the composite and the microscale displacement fields around the tear tip are captured using digital image correlation technique. Tear tip displacements and finite strain behavior are combined to estimate cohesive stresses in the tear-tip region of the composite. The contribution of particle–matrix interfaces towards resisting propagation of the tear is isolated from experimental results to obtain interface-CZM damage parameters. The interface CZM parameters are subsequently utilized in an FEM model to simulate macroscopic composite behavior to find good correlation. The experimental framework established in this paper can be utilized to estimate interface parameters of any particulate-elastomer composites that exhibit finite strain behavior.



中文翻译:

机械发光复合界面基于有限应变弹性的内聚区模型:第二部分。接口损坏特性

在本文的A部分中建立了估计弹性-机械发光(EML)复合材料的微机械性能的需求。人们发现,对于建立精确的EML模型和预测EML设备的功能寿命估计,人们对粒子-矩阵界面的理解不多。为此,本文的A部分通过双线性内聚力区域模型(CZM)将界面的机械行为定义为软化弹簧。宏观应力测量与材料特性相结合,以估算界面弹簧的未损坏刚度($ k_ \ sigma ^ {{\ textrm {int}}} $)。在本文的B部分中,通过实验方法估算了界面弹簧的损坏特性,以完成CZM。这是通过首先从单轴拉伸试验确定宏观EML-PDMS复合材料的有限应变行为来实现的。其次,在复合材料中引起受控的撕裂,并使用数字图像相关技术捕获撕裂尖端周围的微观位移场。撕裂尖端位移和有限应变行为被组合以估计复合材料的撕裂尖端区域中的内聚应力。从实验结果中可以分离出颗粒-基体界面对抵抗泪液传播的贡献,以获得界面-CZM损伤参数。随后,在有限元模型中利用接口CZM参数来模拟宏观复合行为,以找到良好的相关性。本文建立的实验框架可用于估计表现出有限应变行为的任何颗粒弹性体复合材料的界面参数。

更新日期:2020-12-02
down
wechat
bug