当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Process design and analysis of a novel carbon-capture-ready process for flexible-load power generation: Modular pressurized air combustion
Energy Conversion and Management ( IF 10.4 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.enconman.2020.113638
Piyush Verma , Zhiwei Yang , Scott Hume , Andrew Maxson , Richard L. Axelbaum

Abstract The rapid retirement of dispatchable, fossil-based electricity sources and the influx of intermittent energy sources, both driven by the impetus towards a low-carbon future, have led to concerns about the reliability of the grid. The future need for on-demand, rotating, inertial-based assets that can be low carbon and flexibly meet changing demand to balance against intermittency will be essential. Hence, future fossil-based power generation will need to be highly efficient and flexible, and have the ability to add carbon capture when required. This study describes the process design of a modular pressurized air combustion power plant, which involves burning coal in air under pressure in parallel, modular boilers. After treatment, the high-pressure flue gas is passed through a series of turbines and inter-heaters to recover most of the compression work. The high-pressure operation allows for thermal recovery of the latent heat of moisture of the flue gas by integration into the steam cycle, which results in a plant efficiency that is 1.7% higher than that of the conventional atmospheric air-fired power plant. Moreover, the modularity enhances the flexibility of the power plant, with an improved ability for load following. This work also discusses the path to convert the modular, pressurized-air combustion process to a staged, pressurized oxy-combustion process, which is one of the most promising carbon capture processes. This can be accomplished by adding a frontend air separation unit and a backend CO2 compression and purification unit.

中文翻译:

一种用于灵活负载发电的新型碳捕获就绪工艺的工艺设计与分析:模块化加压空气燃烧

摘要 在低碳未来的推动下,可调度、化石能源的快速退役和间歇性能源的涌入,引发了人们对电网可靠性的担忧。未来对按需、旋转、基于惯性的资产的需求将是必不可少的,这些资产可以是低碳的并且可以灵活满足不断变化的需求以平衡间歇性。因此,未来的化石能源发电将需要高效和灵活,并在需要时能够增加碳捕获。本研究描述了模块化加压空气燃烧发电厂的过程设计,该发电厂涉及在并联的模块化锅炉中在空气中燃烧煤。治疗后,高压烟气通过一系列涡轮机和中间加热器以回收大部分压缩功。高压运行允许通过集成到蒸汽循环中对烟气中的水分潜热进行热回收,这使得工厂效率比传统的大气空气发电厂高1.7%。此外,模块化增强了发电厂的灵活性,并提高了负载跟踪能力。这项工作还讨论了将模块化加压空气燃烧过程转换为分阶段加压氧燃烧过程的路径,这是最有前途的碳捕获过程之一。这可以通过添加前端空气分离单元和后端 CO2 压缩和净化单元来实现。高压运行允许通过集成到蒸汽循环中对烟气中的水分潜热进行热回收,这使得工厂效率比传统的大气空气发电厂高1.7%。此外,模块化增强了发电厂的灵活性,并提高了负载跟踪能力。这项工作还讨论了将模块化加压空气燃烧过程转换为分阶段加压氧燃烧过程的路径,这是最有前途的碳捕获过程之一。这可以通过添加前端空气分离单元和后端 CO2 压缩和净化单元来实现。高压运行允许通过集成到蒸汽循环中对烟气中的水分潜热进行热回收,这使得工厂效率比传统的大气空气发电厂高1.7%。此外,模块化增强了发电厂的灵活性,提高了负载跟踪能力。这项工作还讨论了将模块化加压空气燃烧过程转换为分阶段加压氧燃烧过程的路径,这是最有前途的碳捕获过程之一。这可以通过添加前端空气分离单元和后端 CO2 压缩和净化单元来实现。这导致电厂效率比传统大气空气发电厂高 1.7%。此外,模块化增强了发电厂的灵活性,提高了负载跟踪能力。这项工作还讨论了将模块化加压空气燃烧过程转换为分阶段加压氧燃烧过程的路径,这是最有前途的碳捕获过程之一。这可以通过增加一个前端空气分离单元和一个后端 CO2 压缩和净化单元来实现。这导致电厂效率比传统大气空气发电厂高 1.7%。此外,模块化增强了发电厂的灵活性,提高了负载跟踪能力。这项工作还讨论了将模块化加压空气燃烧过程转换为分阶段加压氧燃烧过程的路径,这是最有前途的碳捕获过程之一。这可以通过添加前端空气分离单元和后端 CO2 压缩和净化单元来实现。加压氧燃烧过程,这是最有前途的碳捕获过程之一。这可以通过添加前端空气分离单元和后端 CO2 压缩和净化单元来实现。加压氧燃烧过程,这是最有前途的碳捕获过程之一。这可以通过添加前端空气分离单元和后端 CO2 压缩和净化单元来实现。
更新日期:2021-01-01
down
wechat
bug