当前位置: X-MOL 学术bioRxiv. Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural basis of nucleosome transcription mediated by Chd1 and FACT
bioRxiv - Biochemistry Pub Date : 2020-11-30 , DOI: 10.1101/2020.11.30.403857
Lucas Farnung , Moritz Ochmann , Maik Engeholm , Patrick Cramer

Transcription of eukaryotic protein-coding genes requires passage of RNA polymerase II (Pol II) through nucleosomes. Efficient Pol II passage through nucleosomes depends on the chromatin remodelling factor Chd1 and the histone chaperone FACT. How Chd1 and FACT mediate Pol II passage through nucleosomes remains unclear. Here we first show that Chd1 and FACT cooperate with the elongation factors Spt4/5 and TFIIS to facilitate Pol II transcription through a nucleosome in a defined biochemical system. We then determine cryo-EM structures of transcribing Saccharomyces cerevisiae Pol II-Spt4/5-nucleosome complexes with bound Chd1 or FACT at 2.9 Å and 3.1 Å resolution, respectively. In the first structure, transcribing Pol II has partially unwrapped nucleosomal DNA and exposed the proximal histone H2A/H2B dimer, which is bound by the acidic N-terminal region of Spt5 (Spt5N). The inhibitory DNA-binding region of Chd1 is released and the Chd1 translocase adopts an activated state that is poised to pump DNA towards Pol II. In the second structure, transcribing Pol II has generated a partially unravelled nucleosome that binds FACT in a manner that excludes Chd1 and Spt5N. These results suggest a dynamic model of Pol II passage through a nucleosome. In the model, Pol II enters the nucleosome, activates Chd1 by releasing its DNA-binding region, and thereby stimulates its own progression. Pol II progression then enables FACT binding, liberates Chd1 and Spt5N, and eventually displaces a complex of FACT with histones that is transferred to upstream DNA.

中文翻译:

Chd1和FACT介导的核小体转录的结构基础

真核蛋白质编码基因的转录需要RNA聚合酶II(Pol II)通过核小体。Pol II通过核小体的有效途径取决于染色质重塑因子Chd1和组蛋白伴侣FACT。Chd1和FACT如何介导Pol II通过核小体的传递尚不清楚。在这里,我们首先显示Chd1和FACT与延伸因子Spt4 / 5和TFIIS协同作用,以通过定义的生化系统中的核小体促进Pol II转录。然后,我们确定转录啤酒酵母Pol II-Spt4 / 5-核小体复合物与绑定的Chd1或FACT分别在2.9Å和3.1Å分辨率下的冷冻-EM结构。在第一种结构中,转录的Pol II具有部分解缠的核小体DNA,并暴露了近端组蛋白H2A / H2B二聚体,它被Spt5(Spt5N)的酸性N末端区域绑定。Chd1的抑制性DNA结合区域被释放,Chd1的转位酶采取激活状态,可以将DNA泵向Pol II。在第二种结构中,转录Pol II产生了一部分未解开的核小体,该核小体以不包含Chd1和Spt5N的方式结合FACT。这些结果表明Pol II穿过核小体的动力学模型。在模型中,Pol II进入核小体,通过释放其DNA结合区激活Chd1,从而刺激其自身的进程。然后,Pol II进程使FACT结合,释放Chd1和Spt5N,并最终将FACT与组蛋白置换为复合物,并转移至上游DNA。Chd1的抑制性DNA结合区域被释放,Chd1的转位酶采用激活状态,可以将DNA泵向Pol II。在第二种结构中,转录Pol II产生了一部分未解开的核小体,该核小体以不包含Chd1和Spt5N的方式结合FACT。这些结果表明Pol II穿过核小体的动力学模型。在模型中,Pol II进入核小体,通过释放其DNA结合区激活Chd1,从而刺激其自身的进程。然后,Pol II进程可实现FACT结合,释放Chd1和Spt5N,并最终取代FACT与组蛋白的复合物,该复合物被转移至上游DNA。Chd1的抑制性DNA结合区域被释放,Chd1的转位酶采用激活状态,可以将DNA泵向Pol II。在第二种结构中,转录Pol II产生了一部分未解开的核小体,该核小体以不包含Chd1和Spt5N的方式结合FACT。这些结果表明Pol II穿过核小体的动力学模型。在模型中,Pol II进入核小体,通过释放其DNA结合区激活Chd1,从而刺激其自身的进程。然后,Pol II进程使FACT结合,释放Chd1和Spt5N,并最终将FACT与组蛋白置换为复合物,并转移至上游DNA。转录Pol II产生了一部分未解开的核小体,该核小体以不包含Chd1和Spt5N的方式结合FACT。这些结果表明Pol II穿过核小体的动力学模型。在模型中,Pol II进入核小体,通过释放其DNA结合区激活Chd1,从而刺激其自身的进程。然后,Pol II进程使FACT结合,释放Chd1和Spt5N,并最终将FACT与组蛋白置换为复合物,并转移至上游DNA。转录Pol II产生了一部分未解开的核小体,该核小体以不包含Chd1和Spt5N的方式结合FACT。这些结果表明Pol II穿过核小体的动力学模型。在该模型中,Pol II进入核小体,通过释放其DNA结合区激活Chd1,从而刺激其自身的进程。然后,Pol II进程使FACT结合,释放Chd1和Spt5N,并最终将FACT与组蛋白置换为复合物,并转移至上游DNA。
更新日期:2020-12-01
down
wechat
bug