当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Printing-Assisted Gyroidal Graphite Foam for Advanced Supercapacitors
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2020-11-30 , DOI: 10.1016/j.cej.2020.127885
Junjie Du , Qinghe Cao , Xiaowan Tang , Xi Xu , Xu Long , Jun Ding , Cao Guan , Wei Huang

Rational design and facile construction of 3D porous carbon-based electrodes with both high capacitance and outstanding mechanical performance remains a challenge. Herein, by synergistically combining digital light processing (DLP) and chemical vapor deposition (CVD), a gyroidal 3D graphite foam (GF) with hierarchical porosity ranging from few nanometers to hundreds of micrometers were developed. The resulted GF can be directly used as a robust substrate for the loading of active materials, without using additional binders and current collectors. Through systematical finite element analyses (FEA) and compression tests, GF with the optimised gyroid unit can achieve a highest compressive strength of 1.4 Mpa and hold up approximately 16000 times of its own weight without apparent deformation. The as-fabricated NiCo2O4/GF//N-doped carbon/GF asymmetric supercapacitor not only reveals a remarkable volumetric capacitance of 0.81 F cm-3 at a high current density of 75 mA cm-3, but also shows robust mechanical property that it can maintain stable power output under strong compression. This 3D printing strategy and the promising mechanical and electrochemical properties demonstrated in current work would pave a good way for the development of customizable next-generation high-performance energy storage devices.



中文翻译:

适用于高级超级电容器的3D打印辅助回旋石墨泡沫

具有高电容和出色机械性能的3D多孔碳基电极的合理设计和简便构造仍然是一个挑战。在本文中,通过将数字光处理(DLP)与化学气相沉积(CVD)协同结合,开发了具有从几纳米到几百微米的分层孔隙率的螺旋形3D石墨泡沫(GF)。所得的GF可直接用作负载活性材料的坚固基材,而无需使用其他粘合剂和集电器。通过系统的有限元分析(FEA)和压缩测试,具有优化的回旋单元的GF可以达到1.4 Mpa的最高压缩强度,并承受其自重的大约16000倍而没有明显变形。制成的NiCo 2O 4 / GF // N掺杂的碳/ GF不对称超级电容器不仅在75 mA cm -3的高电流密度下显示出显着的0.81 F cm -3的体积电容,而且还显示出可以保持稳定的强大机械性能。强劲压缩下的功率输出。这种3D打印策略以及当前工作中展示的有前途的机械和电化学性能,将为开发可定制的下一代高性能储能设备铺平道路。

更新日期:2020-12-01
down
wechat
bug