当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase
Biotechnology for Biofuels ( IF 6.3 ) Pub Date : 2020-11-30 , DOI: 10.1186/s13068-020-01832-7
N. Dodge , D. A. Russo , B. M. Blossom , R. K. Singh , B. van Oort , R. Croce , M. J. Bjerrum , P. E. Jensen

Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim to apply WSCP–Chl a as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP–Chl a) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP–Chl a is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP–Chl a shows increased cellulose oxidation under low light conditions, and the WSCP–Chl a complex remains stable after 24 h of light exposure. Additionally, the WSCP–Chl a complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings. With WSCP–Chl a as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP–Chl a allows for stable photobiocatalysis providing a sustainable solution for biomass processing.

中文翻译:

甘蓝的水溶性叶绿素结合蛋白可通过溶解性多糖单加氧酶稳定地对纤维素进行光生物催化氧化

溶菌多糖单加氧酶(LPMO)是工业上用于糖化植物生物质所必需的氧化还原酶。LPMO驱动的纤维素氧化可通过使用叶绿素衍生物和光进行光生物催化而大大增强。水溶性叶绿素结合蛋白(WSCP)使稳定和增溶水溶液中的叶绿素成为可能,从而可以进行光稳定性和ROS产生的体外研究。在这里,我们旨在将WSCP-Chla用作与LPMO,TtAA9进行光生物催化的光敏复合物。在这项研究中,我们证明了用叶绿素a(WSCP–Chl a)重构的WSCP如何创建稳定的光敏复合物,在抗坏血酸和光的存在下产生可控制量的H2O2。WSCP-Chla具有高反应活性,可以通过调节光强度来严格控制H2O2的形成。TtAA9与WSCP-Chla一起在弱光条件下显示纤维素氧化增加,而WSCP-Chla复合物在光照24小时后仍保持稳定。此外,WSCP-Chl复合物在工业设置中在与酶活性相关的温度和pH条件范围内显示出稳定性。使用WSCP-Chla作为光敏剂,可以大大减少补充Chl的需要,从而延长了光驱动LPMO的催化寿命,并提高了纤维素解聚的效率。WSCP–Chl a允许稳定的光生物催化,为生物质处理提供了可持续的解决方案。TtAA9与WSCP-Chla一起在弱光条件下显示纤维素氧化增加,而WSCP-Chla复合物在光照24小时后仍保持稳定。此外,WSCP-Chl复合物在工业设置中在与酶活性相关的温度和pH条件范围内显示出稳定性。使用WSCP-Chla作为光敏剂,可以大大减少补充Chl的需要,从而延长了光驱动LPMO的催化寿命,并提高了纤维素解聚的效率。WSCP–Chl a允许稳定的光生物催化,为生物质处理提供了可持续的解决方案。TtAA9与WSCP-Chla一起在弱光条件下显示纤维素氧化增加,而WSCP-Chla复合物在光照24小时后仍保持稳定。此外,WSCP-Chl复合物在工业设置中在与酶活性相关的温度和pH条件范围内显示出稳定性。使用WSCP-Chla作为光敏剂,可以大大减少补充Chl的需要,从而延长了光驱动LPMO的催化寿命,并提高了纤维素解聚的效率。WSCP–Chl a允许稳定的光生物催化,为生物质处理提供了可持续的解决方案。WSCP-Chl复合物在工业设置中在与酶活性相关的温度和pH条件范围内显示出稳定性。使用WSCP-Chla作为光敏剂,可以大大减少补充Chl的需要,从而延长了光驱动LPMO的催化寿命,并提高了纤维素解聚的效率。WSCP–Chl a允许稳定的光生物催化,为生物质处理提供了可持续的解决方案。WSCP-Chl复合物在工业设置中在与酶活性相关的温度和pH条件范围内显示出稳定性。使用WSCP-Chla作为光敏剂,可以大大减少补充Chl的需要,从而延长了光驱动LPMO的催化寿命,并提高了纤维素解聚的效率。WSCP–Chl a允许稳定的光生物催化,为生物质处理提供了可持续的解决方案。
更新日期:2020-12-01
down
wechat
bug