当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of Proportional–Integrative–Derivative (PID) Optimized for the MicroElectric Discharge Machine Fabrication of Nano-Bismuth Colloid
Micromachines ( IF 3.4 ) Pub Date : 2020-11-30 , DOI: 10.3390/mi11121065
Kuo-Hsiung Tseng , Chaur-Yang Chang , Yagus Cahyadi , Meng-Yun Chung , Chin-Liang Hsieh

Metal nanoparticles are typically prepared by using a chemical method, and a suspension is added to control the particle size and concentration of the nanoparticles. In this study, a micro-electric discharge machine (micro-EDM) was used to melt bismuth into nanoparticles, thus yielding a colloidal solution. No chemicals were added during the manufacturing process, and pure water was used as the medium. The colloid was assessed using an electrohydraulic system, and process parameters were adjusted for optimization; additionally, the discharge pulse wave was analyzed. The proposed preparation process is simple, fast, and cost-effective; moreover, the manufacturing process allows for mass production and reduces environmental pollution. Experimental results revealed that the nano-bismuth (nano-bi) colloidal solution was successfully prepared by the micro-EDM, and absorption peaks in the UV-vis spectrum were observed at 234 and 237 nm. Moreover, to optimize the proportional–integral–derivative (PID) control parameters to be used in the micro-EDM to prepare the nano-bi colloidal solution, this study derived a mathematical model of the micro-EDM. MATLAB was used to obtain the PID parameters. The discharge success rate (74.1876%) for the nano-bi colloidal solution prepared using our method was higher than that (46.9196%) obtained for a nano-bi colloidal solution prepared using an online adaptation method.

中文翻译:

优化了比例积分微分(PID)的技术,用于微放电放电制备纳米铋胶体

金属纳米颗粒通常通过使用化学方法制备,并且添加悬浮液以控制纳米颗粒的粒径和浓度。在这项研究中,使用微放电机(micro-EDM)将铋熔化成纳米颗粒,从而产生胶体溶液。在制造过程中不添加任何化学药品,并且使用纯净水作为介质。使用电动液压系统评估胶体,并调整工艺参数以进行优化;另外,分析了放电脉冲波。拟议的准备过程简单,快速且具有成本效益;此外,制造过程允许批量生产并减少环境污染。实验结果表明,通过微EDM成功制备了纳米铋(胶)溶液,并在234和237 nm处观察到了紫外-可见光谱的吸收峰。此外,为了优化用于微型EDM制备纳米双胶体溶液的比例积分微分(PID)控制参数,本研究推导了微型EDM的数学模型。使用MATLAB获取PID参数。使用我们的方法制备的纳米双胶体溶液的放电成功率(74.1876%)高于使用在线适应方法制备的纳米双胶体溶液的放电成功率(46.9196%)。为了优化用于微型EDM制备纳米双胶体溶液的比例积分微分(PID)控制参数,本研究得出了微型EDM的数学模型。使用MATLAB获取PID参数。使用我们的方法制备的纳米双胶体溶液的放电成功率(74.1876%)高于使用在线适应方法制备的纳米双胶体溶液的放电成功率(46.9196%)。为了优化用于微型EDM制备纳米双胶体溶液的比例积分微分(PID)控制参数,本研究推导了微型EDM的数学模型。使用MATLAB获取PID参数。使用我们的方法制备的纳米双胶体溶液的放电成功率(74.1876%)高于使用在线适应方法制备的纳米双胶体溶液的放电成功率(46.9196%)。
更新日期:2020-12-01
down
wechat
bug