当前位置: X-MOL 学术J. Phys. D: Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering ferromagnetic lines in graphene by local oxidation and hydrogenation using nanoscale lithography
Journal of Physics D: Applied Physics ( IF 3.4 ) Pub Date : 2020-11-28 , DOI: 10.1088/1361-6463/abc448
Ik-Su Byun 1, 2 , Danil W Boukhvalov 3, 4 , Sangik Lee 1 , Wondong Kim 5 , Jaeyoon Baik 6 , Hyun-Joon Shin 6 , Changhee Lee 2 , Young-Woo Son 7 , Quanxi Jia 1, 8 , Bae Ho Park 1
Affiliation  

Graphene-based spintronics has attracted much attention owing to the weak spin–orbit interaction and long spin relaxation length in graphene. For implementation of practical and high-density graphene-based spintronic devices, we need to define nanoscale areas with room-temperature ferromagnetism on graphene. Here we report the room-temperature ferromagnetism observed in nanoscale functionalized (oxidized and hydrogenated) graphene using atomic force microscope lithography without involving potential surface contamination and chemical agents. By performing magnetic force microscope (MFM) measurements, we can clearly distinguish the local ferromagnetic signal of selectively functionalized graphene from that of surrounding non-magnetic pristine graphene. The nanoscale functionalized graphene shows experimental evidence of room-temperature ferromagnetism: (1) larger MFM signal than that of graphene; (2) repulsive and attractive interaction with an MFM tip the magnetization of which points into and out of the graphene, respectively; and (3) MFM signal reversal after applying a high magnetic field at an elevated temperature of 400 K. Our first-principles calculations reveal that unpaired spins are present at non-passivated dangling bonds of vacancies on functionalized graphene and the stable ferromagnetic exchange interactions between them are favored. Therefore, nanoscale functionalized graphene is a good candidate for use as the spin injector or detector of high-density graphene-based spintronic devices.



中文翻译:

使用纳米级光刻技术通过局部氧化和氢化工程化石墨烯中的铁磁线

基于石墨烯的自旋电子学因其自旋-轨道相互作用弱和石墨烯自旋弛豫长度长而备受关注。为了实现实用且高密度的基于石墨烯的自旋电子器件,我们需要在石墨烯上定义具有室温铁磁性的纳米级区域。在这里,我们报告使用原子力显微镜光刻技术在纳米级功能化(氧化和氢化)石墨烯中观察到的室温铁磁性,而不涉及潜在的表面污染和化学试剂。通过执行磁力显微镜(MFM)测量,我们可以清楚地区分选择性功能化石墨烯与周围非磁性原始石墨烯的局部铁磁信号。纳米级功能化石墨烯显示了室温铁磁性的实验证据:(1)MFM信号大于石墨烯。(2)与MFM尖端的排斥性和吸引性相互作用,其磁化强度分别指向和指向石墨烯;(3)在400 K的高温下施加强磁场后,MFM信号反转。我们的第一性原理计算表明,未成对的自旋存在于官能化石墨烯上空位的非钝化悬空键上,并且之间存在稳定的铁磁交换相互作用他们受到青睐。因此,纳米级功能化石墨烯是用作基于高密度石墨烯的自旋电子器件的自旋注射器或检测器的良好候选者。(2)与MFM尖端的排斥性和吸引性相互作用,其磁化强度分别指向和指向石墨烯;(3)在400 K的高温下施加强磁场后,MFM信号反转。我们的第一性原理计算表明,未成对的自旋存在于官能化石墨烯上空位的非钝化悬空键上,并且之间存在稳定的铁磁交换相互作用他们受到青睐。因此,纳米级功能化石墨烯是用作基于高密度石墨烯的自旋电子器件的自旋注射器或检测器的良好候选者。(2)与MFM尖端的排斥性和吸引力相互作用,其磁化强度分别指向和指向石墨烯;(3)在400 K的高温下施加强磁场后,MFM信号反转。我们的第一性原理计算表明,未成对的自旋存在于官能化石墨烯上空位的非钝化悬空键上,并且之间存在稳定的铁磁交换相互作用他们受到青睐。因此,纳米级功能化石墨烯是用作基于高密度石墨烯的自旋电子器件的自旋注射器或检测器的良好候选者。我们的第一性原理计算表明,未成对的自旋存在于功能化石墨烯上的空位的非钝化悬空键上,因此它们之间的稳定铁磁交换相互作用受到青睐。因此,纳米级功能化石墨烯是用作基于高密度石墨烯的自旋电子器件的自旋注射器或检测器的良好候选者。我们的第一性原理计算表明,未成对的自旋存在于功能化石墨烯上的空位的非钝化悬空键上,因此它们之间的稳定铁磁交换相互作用受到青睐。因此,纳米级功能化石墨烯是用作基于高密度石墨烯的自旋电子器件的自旋注射器或检测器的良好候选者。

更新日期:2020-11-28
down
wechat
bug