当前位置: X-MOL 学术J. Laser Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermophysical modeling of selective laser ablation processing of lithium-ion battery cathodes
Journal of Laser Applications ( IF 2.1 ) Pub Date : 2020-11-01 , DOI: 10.2351/7.0000200
Sebastian Enderle 1 , Marius Bolsinger 2 , Simon Ruck 1 , Volker Knoblauch 2 , Harald Riegel 1
Affiliation  

The microstructural optimization of lithium-ion battery (LiB) electrodes has recently gained a lot of interest. Versatile approaches to enhance fast charging abilities of LiB electrodes are the subject of current research. One of these approaches is the laser based photothermic removal of superficial inactive electrode components in order to improve the accessibility of the active material particles for the lithium-ions. In this work, we established a thermophysical model to describe the temperature fields within the electrode resulting from laser material processing. The model delivers satisfying results regarding the prediction of the removal of the top surface electrode layer that mainly consists of a binder and conductive additives. Lining up a simple approach of estimating the average depth in which the inactive binder-additive compound is selectively removed from the electrode's active mass layer led to a good agreement between the calculated and experimental results. Additionally, a potential negative thermal impact on the active material particles themselves due to the laser processing is evaluated. The established model can be used to optimize laser parameters in order to simultaneously maximize the selectively ablated inactive material and to minimize the thermal impact on the active material particles. Moreover, the model is capable of being transferred to laser processing of other types of composite materials such as LiB-anodes or carbon fiber reinforced polymers.

中文翻译:

锂离子电池阴极选择性激光烧蚀加工的热物理模型

锂离子电池(LiB)电极的微观结构优化最近引起了很多兴趣。增强 LiB 电极快速充电能力的多功能方法是当前研究的主题。这些方法之一是基于激光的光热去除表面非活性电极组件,以提高活性材料颗粒对锂离子的可及性。在这项工作中,我们建立了一个热物理模型来描述由激光材料加工产生的电极内的温度场。该模型在预测主要由粘合剂和导电添加剂组成的顶面电极层的去除方面提供了令人满意的结果。排列一种简单的方法来估计从电极的活性物质层中选择性去除非活性粘合剂添加剂化合物的平均深度,导致计算结果和实验结果之间具有良好的一致性。此外,还评估了由于激光加工对活性材料颗粒本身的潜在负面热影响。建立的模型可用于优化激光参数,以同时最大化选择性烧蚀的非活性材料并最小化对活性材料颗粒的热影响。此外,该模型能够转移到其他类型的复合材料的激光加工中,例如 LiB 阳极或碳纤维增强聚合物。s 活性质量层导致计算和实验结果之间的良好一致性。此外,还评估了由于激光加工对活性材料颗粒本身的潜在负面热影响。建立的模型可用于优化激光参数,以同时最大化选择性烧蚀的非活性材料并最小化对活性材料颗粒的热影响。此外,该模型能够转移到其他类型的复合材料的激光加工中,例如 LiB 阳极或碳纤维增强聚合物。s 活性质量层导致计算和实验结果之间的良好一致性。此外,还评估了由于激光加工对活性材料颗粒本身的潜在负面热影响。建立的模型可用于优化激光参数,以同时最大化选择性烧蚀的非活性材料并最小化对活性材料颗粒的热影响。此外,该模型能够转移到其他类型的复合材料的激光加工中,例如 LiB 阳极或碳纤维增强聚合物。建立的模型可用于优化激光参数,以同时最大化选择性烧蚀的非活性材料并最小化对活性材料颗粒的热影响。此外,该模型能够转移到其他类型的复合材料的激光加工中,例如 LiB 阳极或碳纤维增强聚合物。建立的模型可用于优化激光参数,以同时最大化选择性烧蚀的非活性材料并最小化对活性材料颗粒的热影响。此外,该模型能够转移到其他类型的复合材料的激光加工中,例如 LiB 阳极或碳纤维增强聚合物。
更新日期:2020-11-01
down
wechat
bug