当前位置: X-MOL 学术J. Laser Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature behavior of metal surface with moving annular hollow laser heat source
Journal of Laser Applications ( IF 2.1 ) Pub Date : 2020-11-01 , DOI: 10.2351/7.0000213
Yuting Xu 1 , Xiaohui Zhang 1 , Junyong Shen 1 , Tuo Shi 2
Affiliation  

The temperature distribution characteristics of a moving annular hollow laser beam irradiated on the substrate are studied in this paper. First, through the linear superposition property of potential function, we derive the analytical solution of temperature distribution and the cooling rate of the moving ideal annular hollow heat source. The entransy dissipation rate per unit volume of the annular hollow laser beam is more uniform than that of the Gaussian laser beam. The “ω”-shaped profile of the cross-sectional melt temperature is predicted. Second, we set up an actual annular hollow heat source expression, and two parameters (hollow ratio and heat source hollow area) are defined to describe the heat transfer characteristics of the actual annular hollow heat source. Experiments are carried out to validate transient numerical results. The maximum relative error between the experiments and the simulations is 6.39%, and the average relative error is 3.16%. In the simulation, we compare the profile temperature field of the annular hollow heat source with that of the Gaussian heat source. The profile temperature field in simulation for the actual annular hollow heat source is in agreement with that predicted in the analytical solution for the ideal annular hollow heat source. The effects of scanning speed, power intensity, hollow ratio, and heat source hollow area on the temperature field are demonstrated. The obtained characteristics provide theoretical support for laser materials engineering applications.

中文翻译:

带移动环形空心激光热源的金属表面温度行为

本文研究了移动的环形空心激光束照射在基板上的温度分布特性。首先,通过势函数的线性叠加性质,推导出运动的理想环形空心热源的温度分布和冷却速率的解析解。环形空心激光束单位体积的火积耗散率比高斯激光束更均匀。预测截面熔体温度的“ω”形曲线。其次,我们建立了一个实际的环形空心热源表达式,并定义了两个参数(空心比和热源空心面积)来描述实际环形空心热源的传热特性。进行实验以验证瞬态数值结果。实验与模拟的最大相对误差为6.39%,平均相对误差为3.16%。在模拟中,我们比较了环形空心热源和高斯热源的剖面温度场。实际环形空心热源模拟中的剖面温度场与理想环形空心热源解析解中预测的一致。论证了扫描速度、功率强度、空心比和热源空心面积对温度场的影响。所得特性为激光材料工程应用提供理论支持。我们比较了环形空心热源和高斯热源的剖面温度场。实际环形空心热源模拟中的剖面温度场与理想环形空心热源解析解中预测的一致。论证了扫描速度、功率强度、空心比和热源空心面积对温度场的影响。所得特性为激光材料工程应用提供理论支持。我们将环形空心热源的剖面温度场与高斯热源的剖面温度场进行了比较。实际环形空心热源模拟中的剖面温度场与理想环形空心热源解析解中预测的一致。论证了扫描速度、功率强度、空心比和热源空心面积对温度场的影响。所得特性为激光材料工程应用提供理论支持。并演示了温度场上的热源空心区域。所得特性为激光材料工程应用提供理论支持。并演示了温度场上的热源空心区域。所得特性为激光材料工程应用提供理论支持。
更新日期:2020-11-01
down
wechat
bug