当前位置: X-MOL 学术physica status solidi (b) › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of Outer Shell Layer on the Electronic Transport Behaviors of Sn@SnOx Nanoparticles
physica status solidi (b) Pub Date : 2020-11-30 , DOI: 10.1002/pssb.202000430
Ang Ding 1 , Tianjun Li 1 , Dongxing Wang 1 , Javid Muhammad 2 , Asif Shah 2 , Xinglong Dong 2 , Zhidong Zhang 3
Affiliation  

Tin oxide‐encapsulated tin nanoparticles (Sn@SnOx NCs) are in situ prepared by a modified DC arc‐discharge plasma process. The as‐prepared Sn@SnOx NCs are typically 50–70 nm in diameter with 6 nm of the SnOx shell. The diameter of Sn@SnOx NCs is 50–80 nm and the thickness of the SnOx shell increases to ≈25 nm after heat treatment in a vacuum tube furnace. The effect of SnOx shell thickness on the electrical properties of Sn@SnOx NCs is measured by the four‐probe technique. The results show that the resistivity is described using Bloch–Grüneisen's equation with SnOx shell thickness‐dependent resistivity and SnOx shell thickness‐dependent Debye temperature above the superconducting transition temperature Tc. Superconductivity occurs in both Sn@SnOx NCs with different shell thicknesses when the temperature is lower than Tc. The Tc of the two NCs (3.98 K, 4.15 K) is slightly higher than that of the metal block (3.73 K) due to the electron‐scattering effect of the particles' surface shell. The resistances of the two samples below Tc show an exponential decay mode, which is the result of the thermally activated phase slip (TAPS) and quantum phase slip (QPS).

中文翻译:

外壳层对Sn@SnOx纳米颗粒电子输运行为的影响

氧化锡封装的锡纳米颗粒(Sn@SnOXNCs)是通过改进的直流电弧放电等离子体工艺原位制备的。所制备的Sn@SnOXNC 的直径通常为 50–70 nm,其中 SnO 为 6 nmX壳。Sn@SnO的直径XNCs 为 50–80 nm,SnO 的厚度X在真空管式炉中热处理后,壳层尺寸增加至约25 nm。SnO的作用X壳层厚度对Sn@SnO电学性能的影响XNCs 通过四探针技术测量。结果表明,电阻率可以用带有 SnO 的 Bloch-Grüneisen 方程来描述X壳厚度相关的电阻率和 SnOX壳厚度相关的德拜温度高于超导转变温度时间C。Sn@SnO 中都存在超导性X当温度低于时间C。这时间C由于颗粒表面壳的电子散射效应,两个NC的(3.98 K,4.15 K)略高于金属块(3.73 K)。下面两个样品的电阻时间C显示指数衰减模式,这是热激活相滑移(TAPS)和量子相滑移(QPS)的结果。
更新日期:2020-11-30
down
wechat
bug