当前位置: X-MOL 学术Mater. Today Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A High-rate, Long Life, and Anti-self-discharge Aqueous N-doped Ti3C2/Zn Hybrid Capacitor
Materials Today Energy ( IF 9.3 ) Pub Date : 2020-11-28 , DOI: 10.1016/j.mtener.2020.100598
Y. Jin , H. Ao , K. Qi , X. Zhang , M. Liu , T. Zhou , S. Wang , G. Xia , Y. Zhu

Two-dimensional transition metal carbides (nitrides) MXenes have excellent electrochemical properties and be hoped as a promising electrode material for supercapacitors. However, MXene nanosheets are prone to aggregate due to van der Waals interaction, which affect its electrochemical performance. In this study, nitrogen-doped Ti3C2 (N-Ti3C2), which hydrothermally prepared from MXene Ti3C2, was assembled with metallic zinc to obtain a hybrid capacitor system in 1 M ZnSO4 aqueous electrolyte. In the voltage range of 0.05–1.2 V, the specific capacitance of this capacitor can reach 247.9 F g−1 (corresponding to an energy of 45.54 Wh kg−1). At high current density, it can quickly charge and discharge in 27 s, accompanied a high power output of 4093 W kg−1 and an energy of 30.99 Wh kg−1. It presents an outstanding cycling stability with 88.34% capacity retention over 6000 cycles. The self-discharge rate in 240 h is only 1.24 mV h−1. The high electrochemical performance mainly based on the introduction of nitrogen heteroatoms in cathode of N-Ti3C2, which show the ion adsorption/desorption, and the deposition/exfoliation of Zn (Zn2+) on the Zn anode to combine a hybrid capacitor.



中文翻译:

高速,长寿命且抗自放电的N掺杂Ti 3 C 2 / Zn水性混合电容器

二维过渡金属碳化物(氮化物)MXene具有出色的电化学性能,并有望作为超级电容器的有前途的电极材料。然而,由于范德华相互作用,MXene纳米片易于聚集,这会影响其电化学性能。在这项研究中,将由MXene Ti 3 C 2水热制备的氮掺杂Ti 3 C 2(N-Ti 3 C 2)与金属锌组装在一起,以在1 M ZnSO 4水性电解质中获得混合电容器系统。在0.05–1.2 V的电压范围内,该电容器的比电容可达到247.9 F g -1(对应于45.54 Wh kg -1的能量)。在高电流密度下,它可以在27 s内快速充电和放电,伴随着4093 W kg -1的高功率输出和30.99 Wh kg -1的能量。它具有出色的循环稳定性,在6000次循环中的容量保持率为88.34%。在240小时内的自放电速率仅为1.24mV h -1。较高的电化学性能主要是由于在N-Ti 3 C 2阴极中引入了氮杂原子,这些杂原子表现出离子吸附/解吸作用,以及Zn(Zn 2+)在Zn阳极上的沉积/剥落,从而形成杂化体。电容器。

更新日期:2021-01-04
down
wechat
bug