当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of carbon pores size on ionic liquid based-supercapacitor performance
Journal of Colloid and Interface Science ( IF 9.9 ) Pub Date : 2020-11-28 , DOI: 10.1016/j.jcis.2020.11.093
Loreto Suárez , Violeta Barranco , Teresa A. Centeno

A comprehensive comparison of symmetrical supercapacitors assembling carbon electrodes with exclusively microporous, mesoporous or combined micro-mesoporous networks provides a critical outlook on the influence of pores size on the performance with ionic liquid-based electrolyte 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm-TFSI) dissolved in acetonitrile. Contrary to widespread claims, the results for an electrodes set involving carbons of different origin indicate that the presence of large pores does not ensure a better supercapacitor performance. At low current density, the capacitance is basically determined by the surface in pores above 0.8 nm, regardless of the pore size distribution. In addition, the beneficial effect of large pores on the response rate of the supercapacitor cannot be concluded in a straightforward manner. On the contrary, wide porosity in electrodes has detrimental effects that should not be underestimated as far as the competitiveness of the final device is concerned. The greater amount of electrolyte required by larger pores will increase both the weight and the cost of the cell. More importantly, the widening of carbon pores (even in the range of micropores) notably reduces the density of the corresponding electrodes and, consequently, the supercapacitor performance in volumetric terms may not be suitable for practical applications.



中文翻译:

碳孔尺寸对离子液体型超级电容器性能的影响

全面比较对称的超级电容器组装的碳电极与专门的微孔,中孔或组合的微介孔网络提供了一个关键的前景,对孔尺寸对离子液体电解质1-乙基-3-甲基咪唑双(三氟甲基磺酰基)性能的影响酰亚胺(EMIm-TFSI)溶于乙腈。与广泛的主张相反,涉及不同来源碳的电极组的结果表明,大孔的存在不能确保更好的超级电容器性能。在低电流密度下,无论孔径分布如何,电容基本上由高于0.8 nm的孔中的表面决定。此外,大孔对超级电容器响应速度的有益作用无法简单地得出结论。相反,就最终设备的竞争力而言,电极中的大孔隙率具有不利影响,不应低估。大孔所需要的大量电解质将增加电池的重量和成本。更重要的是,碳孔的扩大(即使在微孔范围内)也明显降低了相应电极的密度,因此,超级电容器的体积性能可能不适用于实际应用。大孔所需要的大量电解质将增加电池的重量和成本。更重要的是,碳孔的扩大(即使在微孔范围内)也明显降低了相应电极的密度,因此,超级电容器的体积性能可能不适用于实际应用。大孔所需要的大量电解质将增加电池的重量和成本。更重要的是,碳孔的扩大(即使在微孔范围内)也明显降低了相应电极的密度,因此,超级电容器的体积性能可能不适用于实际应用。

更新日期:2020-12-01
down
wechat
bug