当前位置: X-MOL 学术Int. J. Solids Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fracture behavior of additively printed ABS: Effects of print architecture and loading rate
International Journal of Solids and Structures ( IF 3.6 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.ijsolstr.2020.11.027
John P. Isaac , Sivareddy Dondeti , Hareesh V. Tippur

Abstract Acrylonitrile Butadiene Styrene (ABS) is an inexpensive amorphous thermoplastic used for Additive Manufacturing (AM) of engineering parts. Fused Filament Fabrication (FFF) is commonly used to 3D print ABS, and it involves layer-by-layer deposition of melted thermoplastic wire through a heated nozzle along predetermined paths. The individual layers can also be configured differently and could introduce mechanical anisotropy into the final part in terms of weak planes between individual beads and layers even when the feedstock is isotropic. In this context, this research examines the dynamic fracture behaviors of three different print architectures, namely [0°/90°]n, [45°/-45°]n and [0°/45°/90°/-45°]n in-plane orientations, under stress-wave loading conditions and compares the results with the quasi-static counterparts. The dynamic experiments are carried out using a modified-Hopkinson pressure bar apparatus. The full-field measurement of in-plane displacements are performed using Digital Image Correlation (DIC) and ultrahigh-speed photography of V-notched specimens subjected to stress-wave loading. A novel method of analyzing DIC data by transferring it to a finite element environment to compute the J-integral using prevailing domain integral algorithms is introduced. Distinct crack initiation and growth behaviors with different failure modes are observed in the three architectures under static and dynamic loading conditions despite the macroscale elastic isotropy. The results favor [0°/45°/90°/-45°]n architecture due to a better crack growth behavior relative to the other two, raising the possibility of fracture performance enhancement by tailoring the build architecture.

中文翻译:

增材印刷 ABS 的断裂行为:印刷结构和加载速率的影响

摘要 丙烯腈丁二烯苯乙烯 (ABS) 是一种廉价的无定形热塑性塑料,用于工程部件的增材制造 (AM)。熔丝制造 (FFF) 通常用于 3D 打印 ABS,它涉及通过加热喷嘴沿预定路径逐层沉积熔化的热塑性线材。即使在原料是各向同性的情况下,各个层也可以不同地配置,并且可以根据各个珠子和层之间的弱平面将机械各向异性引入最终部件中。在此背景下,本研究检查了三种不同打印架构的动态断裂行为,即 [0°/90°]n、[45°/-45°]n 和 [0°/45°/90°/-45°] ]n 面内方向,在应力波加载条件下,并将结果与​​准静态对应物进行比较。使用改进的霍普金森压力棒装置进行动态实验。平面内位移的全场测量是使用数字图像相关 (DIC) 和承受应力波加载的 V 型缺口试样的超高速摄影进行的。介绍了一种通过将 DIC 数据传输到有限元环境以使用流行的域积分算法计算 J 积分来分析 DIC 数据的新方法。尽管宏观弹性各向同性,但在静态和动态加载条件下,在三种结构中观察到具有不同失效模式的不同裂纹萌生和扩展行为。由于相对于其他两个具有更好的裂纹扩展行为,结果有利于 [0°/45°/90°/-45°]n 结构,
更新日期:2021-03-01
down
wechat
bug