当前位置: X-MOL 学术Alex. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical analysis of higher order chemical reaction on electrically MHD nanofluid under influence of viscous dissipation
Alexandria Engineering Journal ( IF 6.8 ) Pub Date : 2020-11-28 , DOI: 10.1016/j.aej.2020.11.034
D. Gopal , S. Saleem , S. Jagadha , Farooq Ahmad , A. Othman Almatroud , N. Kishan

In this paper, the groundwork of some thermophysical properties of higher-order chemical processing and dissipation of viscous on nanofluid along with a continuously stretching porous sheet is taken. The porous medium is considered with two space coordinates, laminar, time-invariant, MHD incompressible Newtonian nanofluid. The equations are framed to govern the fluid flow as coupled equations involving nonlinear partial derivatives. The impacts of electric and magnetic fields on nanofluid with viscous dissipation in the presence of higher-order chemical reaction, analyzing conservation of momentum and energy, is the novelty of the problem. The level of raising thermal conductivity and the output of transferring the heat on nanofluid is observed. Finally, the governing equations involving partial derivatives have complied with nonlinear ordinary differential equations. The transformations are subjected to the similarity variable used to solve these equations. Approximate solutions are obtained using a numerical method of the Runge-Kutta-Felburg method with shooting technique. The effects of emerging parameters Kr,Er,λ,Nt,δ,Nb are porous, electric, mixed convection, thermophoresis, chemical process and, Brownian motion, and non-dimensional numbers such as Hartmann, Prandtl, Schmidt, and Eckert are extensively explained. The electrically conducting nanofluid flow for velocity fluid, temperature fluid and, nanoparticles concentration volume fraction fluid with transferring heat, Nusselt, and transferring mass, Sherwood number are examined with graphical representation. The Lorentz resistive force due to the applied strength of electric develops the thickness of boundary layers of momentum and thermal regions. This helps to cool the electronic systems and radiators. The dimensionless Nusselt number diminishes with various values of thermophoresis and Brownian motion parameters as a dependent function of Hartmann, electric number, and homogeneous chemical reaction parameter.



中文翻译:

粘性耗散影响下电MHD纳米流体高阶化学反应的数值分析

在本文中,对高阶化学处理的一些热物理性质以及粘性在纳米流体上的耗散以及连续拉伸的多孔片材进行了基础研究。多孔介质被认为具有两个空间坐标,层流,时间不变,MHD不可压缩牛顿纳米流体。这些方程式被构架为控制流体流动的耦合方程式,涉及非线性偏导数。在存在高阶化学反应的情况下,电场和磁场对具有粘性耗散的纳米流体的影响,分析动量和能量的守恒,是问题的新颖之处。观察到提高导热率的水平以及在纳米流体上传递热量的输出。最后,涉及偏导数的控制方程与非线性常微分方程一致。变换经历用于求解这些方程式的相似性变量。使用带有射击技术的Runge-Kutta-Felburg方法的数值方法可以获得近似解。新出现的参数的影响ķ[RË[RλñŤδñb多孔,电,混合对流,热泳,化学过程和布朗运动,以及无量纲数字(例如Hartmann,Prandtl,Schmidt和Eckert)得到了广泛的解释。用图形表示检查了速度流体,温度流体和纳米颗粒浓度体积分数流体的导电纳米流体流,其中传递了热量,Nusselt和传递质量,Sherwood数。由于电的施加强度而产生的洛伦兹阻力产生了动量和热区边界层的厚度。这有助于冷却电子系统和散热器。无量纲的努塞尔数随着热泳和布朗运动参数的各种值而减小,这是哈特曼,电子数,

更新日期:2020-12-01
down
wechat
bug