当前位置: X-MOL 学术Int. J. Appl. Electromagn. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relationship between applied force and magnetic field in a pseudo-static test of a portal frame
International Journal of Applied Electromagnetics and Mechanics ( IF 0.6 ) Pub Date : 2020-11-19 , DOI: 10.3233/jae-190135
Huan Guo 1, 2 , Sanqing Su 1 , Wei Wang 1 , Xiaoping Ma 1 , Shuchun Yi 1 , Xuran Zhao 1
Affiliation  

Metal magnetic memory (MMM) testing is a nondestructive approach for evaluating the stress concentration and early damage of ferromagnetic components. However, research on the MMM testing of large steel structures has been limited. Thus, this study investigates the suitability of MMM technology formonitoring the damage in steel structures exposed to complex stresses. The normal components of magnetic signals Hp(y) on the beams and columns of a portal frame are obtained through pseudo-static testing. The signal increment ΔHp(y) and its absolute value |ΔHp(y)| under different loads are analyzed. The relationship between the equivalent stress and magnetic signal is investigated through numerical simulation. The results show that the ΔHp(y) curves are similar during the elastic stage but change abruptly during the plastic phase. Moreover, the differences in the magnetic signal directions caused by the varying detection directions cannot be ignored. In the elastic stage, with the increase in the load, |ΔHp(y)| curves initially increase and then decrease. The formation of the ΔHp(y) curve is similar to the distribution of the equivalent stress. The mutation of ΔHp(y) can determine whether a specimen is entering the plastic phase, and can warn against structural failure. The magnetic signal distribution qualitatively reflects the stress distribution.

中文翻译:

门框假静态试验中施加力与磁场的关系

金属磁记忆(MMM)测试是一种非破坏性方法,用于评估应力集中和铁磁组件的早期损坏。但是,对大型钢结构的MMM测试的研究受到限制。因此,本研究调查了MMM技术用于监测暴露于复杂应力下的钢结构损伤的适用性。通过伪静态测试获得门框的梁和柱上的磁信号Hp(y)的正态分量。信号增量ΔHp(y)及其绝对值|ΔHp(y)| 分析了不同负载下的情况。通过数值模拟研究了等效应力与磁信号之间的关系。结果表明,在弹性阶段,ΔHp(y)曲线相似,但在塑性阶段则突然变化。此外,由变化的检测方向引起的磁信号方向上的差异不能忽略。在弹性阶段,随着载荷的增加,|ΔHp(y)| 曲线先增大然后减小。ΔHp(y)曲线的形成类似于等效应力的分布。ΔHp(y)的突变可以确定样品是否进入塑性相,并可以警告结构失效。磁信号分布定性地反映了应力分布。ΔHp(y)的突变可以确定样品是否进入塑性相,并可以警告结构失效。磁信号分布定性地反映了应力分布。ΔHp(y)的突变可以确定样品是否进入塑性相,并可以警告结构失效。磁信号分布定性地反映了应力分布。
更新日期:2020-11-27
down
wechat
bug