当前位置: X-MOL 学术Mater. Today Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ge(Sn) growth on Si(001) by magnetron sputtering
Materials Today Communications ( IF 3.8 ) Pub Date : 2020-11-26 , DOI: 10.1016/j.mtcomm.2020.101915
H. Khelidj , A. Portavoce , M. Bertoglio , M. Descoins , L. Patout , K. Hoummada , A. Hallén , A. Charaï , M.C. Benoudia , D. Mangelinck

The semi-conductor Ge1―xSnx exhibits interesting properties for optoelectronic applications. In particular, Ge1―xSnx alloys with x ≥ 0.1 exhibit a direct band-gap, and integrated in complementary-metal-oxide-semiconductor (CMOS) technology, should allow the development of Si photonics. CMOS-compatible magnetron sputtering deposition was shown to produce monocrystalline Ge1―xSnx films with good electrical properties at low cost. However, these layers were grown at low temperature (< 430 K) and contained less than 6% of Sn. In this work, Ge1―xSnx thin films were elaborated at higher temperature (> 600 K) on Si(001) by magnetron sputtering in order to produce low-cost and CMOS-compatible relaxed pseudo-coherent layers with x ≥ 0.1 exhibiting a better crystallinity. Ge1―xSnx crystallization and Ge1―xSnx crystal growth were investigated. Crystallization of an amorphous Ge1―xSnx layer deposited on Si(001) or Ge(001) grown on Si(001) leads to the growth of polycrystalline films. Furthermore, the competition between Ge/Sn phase separation and Ge1―xSnx growth prevents the formation of large-grain Sn-rich Ge1―xSnx layers without the formation of β-Sn islands on the layer surface, due to significant atomic redistribution kinetics at the crystallization temperature (T =733 K for x = 0.17). However, the growth at T =633 K of a highly-relaxed pseudo-coherent Ge0.9Sn0.1 film with low impurity concentrations (< 2 × 1019 at cm―3) and an electrical resistivity four orders of magnitude smaller than undoped Ge is demonstrated. Consequently, magnetron sputtering appears as an interesting technique for the integration of optoelectronic and photonic devices based on Ge1―xSnx layers in the CMOS technology.



中文翻译:

磁控溅射在Si(001)上生长Ge(Sn)

Ge 1― x Sn x半导体在光电应用中表现出令人感兴趣的特性。特别地,锗1- X Sn的X合金X ≥0.1表现出直接带隙,并且集成在互补金属氧化物半导体(CMOS)技术,应该允许的Si光子学的发展。CMOS兼容的磁控溅射沉积显示出可以低成本生产具有良好电性能的单晶Ge 1 x x Sn x薄膜。但是,这些层是在低温(<430 K)下生长的,并且含有少于6%的Sn。在这项工作中,Ge 1― x Sn x薄膜在更高的温度(> 600 K)在Si(001)通过磁控为了溅射以产生低成本和CMOS兼容松弛伪相干层用阐述X ≥0.1表现出更好的结晶性。研究了Ge 1― x Sn x的结晶和Ge 1― x Sn x晶体的生长。沉积在Si(001)或Si(001)上生长的Ge(001)上的非晶Ge 1- x Sn x层的结晶导致多晶膜的生长。此外,Ge / Sn相分离与Ge 1― x Sn x之间的竞争生长会阻止形成大晶粒的富Sn的Ge 1― x Sn x层,而不会在层表面形成β- Sn岛,这是由于在结晶温度下显着的原子重新分布动力学(对于x  = 0.17,T = 733 K )。然而,在T = 633 K处生长的高弛豫伪相干Ge 0.9 Sn 0.1薄膜具有较低的杂质浓度(在cm -3时<2×10 19)和比未掺杂的Ge小四个数量级的电阻率。因此,在CMOS技术中,磁控溅射似乎是将Ge 1― x Sn x层为基础的光电子和光子器件集成的有趣技术。

更新日期:2020-11-27
down
wechat
bug