当前位置: X-MOL 学术Strength Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Pulse Current on Residual Stresses in AMg6 Aluminum Alloy in Electrodynamic Treatment
Strength of Materials ( IF 0.7 ) Pub Date : 2020-11-26 , DOI: 10.1007/s11223-020-00226-2
Yu. M. Sydorenko , M. O. Pashchyn , O. L. Mykhodui , Yu. A. Khokhlova , M. A. Khokhlov

The development of energy-efficient methods of controlling the stress state of metallic materials and welded joints is topical for modern production. One of such methods is electrodynamic treatment (EDT). It is based on the passage of electric current pulses (ECP) through the metal, time-synchronized with an impact load initiated by electrodynamic forces. In this case, an electrodynamic deformation process and a process of formation of elastic strain waves occur simultaneously in the material being treated; they are defined as “electrodynamic impact”, the result of which is a local stress relaxation in the metal. The developed mathematical model of the formation of stress and strain fields during EDT, which is based on the motion of an elastoplastic medium, does not take into account the effect of ECPs on dynamic relaxation processes. A computational and experimental assessment of the effect of ECPs, which is based on the experimental assessment of the stress state and microindentation of AMg6 aluminum alloy plates after EDT without and with the passage of ECPs through the metal being treated, has been performed by the mathematical modeling of the EDT process taking into account microindentation results. The passage of ECPs contributes to an increase in tensile plastic strains and hence to an increase in residual compressive stresses (provided that the specimens to be treated are rigidly fixed). The reliability of the procedure has been confirmed by the results of evaluating the distribution of residual welding stresses in AMg6 alloy butt joints after EDT.



中文翻译:

脉冲电流对电处理AMg6铝合金残余应力的影响

控制金属材料和焊接接头应力状态的节能方法的发展是现代生产的主题。这样的方法之一是电动力学治疗(EDT)。它基于电流脉冲(ECP)通过金属的时间,并与电动势引发的冲击负载时间同步。在这种情况下,在被处理的材料中同时发生电动变形过程和弹性应变波的形成过程。它们被定义为“电动冲击”,其结果是金属中的局部应力松弛。建立在EDT上应力和应变场形成的数学模型是基于弹塑性介质的运动,它没有考虑ECP对动态松弛过程的影响。通过数学计算,对ECP进行了计算和实验评估,该评估是基于在无ECP和使ECP通过金属的情况下进行EDT后AMg6铝合金板的应力状态和微压痕的实验评估。 EDT过程的建模考虑了微压痕结果。ECP的通过有助于拉伸塑性应变的增加,因此也有助于残余压应力的增加(前提是要处理的样品牢固固定)。通过评估EDT后AMg6合金对接接头中残余焊接应力分布的结果,证实了该程序的可靠性。通过对EDT过程进行数学建模,并考虑了微压痕结果,该试验基于对Eg在无EDT和使ECP穿过金属进行处理后对AMg6铝合金板进行应力状态和微压痕的实验评估。ECP的通过有助于拉伸塑性应变的增加,因此也有助于残余压应力的增加(前提是要处理的样品牢固固定)。通过评估EDT后AMg6合金对接接头中残余焊接应力分布的结果,证实了该程序的可靠性。通过对EDT过程进行数学建模,并考虑了微压痕结果,该试验基于对Eg在无EDT和使ECP穿过金属进行处理后对AMg6铝合金板进行应力状态和微压痕的实验评估。ECP的通过有助于拉伸塑性应变的增加,因此也有助于残余压应力的增加(前提是要处理的样品牢固固定)。通过评估EDT后AMg6合金对接接头中残余焊接应力分布的结果,证实了该程序的可靠性。考虑到微压痕结果,通过对EDT过程进行数学建模来完成。ECP的通过有助于拉伸塑性应变的增加,因此也有助于残余压应力的增加(前提是要处理的样品牢固固定)。通过评估EDT后AMg6合金对接接头中残余焊接应力分布的结果,证实了该程序的可靠性。考虑到微压痕结果,通过对EDT过程进行数学建模来完成。ECP的通过有助于拉伸塑性应变的增加,因此也有助于残余压应力的增加(前提是要处理的样品牢固固定)。通过评估EDT后AMg6合金对接接头中残余焊接应力分布的结果,证实了该程序的可靠性。

更新日期:2020-11-27
down
wechat
bug