当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utilizing host–guest interaction enables the simultaneous enhancement of the quantum yield and Stokes shift in organosilane-functionalized, nitrogen-containing carbon dots for laminated luminescent solar concentrators
Nanoscale ( IF 6.7 ) Pub Date : 2020-10-30 , DOI: 10.1039/d0nr07163c
Hsiu-Ying Huang, Maria Jessabel Talite, Kun-Bin Cai, Ruth Jeane Soebroto, Sheng-Hsiung Chang, Wei-Ren Liu, Wu-Ching Chou, Chi-Tsu Yuan

Solar energy can be harvested using luminescent solar concentrators (LSCs) incorporated with edge-mounted solar cells without sacrificing their see-through visibility, thus facilitating the development of solar windows. Eco-friendly carbon dots (CDs) are promising alternatives to heavy-metal-containing quantum dots in LSC applications. Unfortunately, their solid-state quantum yield (QY) at high optical density (required by laminated LSCs) is still low (<30%) and the Stokes shift is only moderate (<100 nm). Here, we studied the host–guest interaction between aminosilane-functionalized, nitrogen-containing CDs (Si-NCDs) and a silica matrix for preparing efficient laminated LSCs. We found that a sol–gel-derived silica matrix with vacuum treatment can efficiently suppress the direct nonradiative transition of the absorbing states and selectively enhance the long-wavelength-emitting surface states. Therefore, the formed Si-NCDs@silica composites simultaneously exhibited high QYs (>60%) and large Stokes shifts (>200 nm) even at a high loading content (∼10 wt%), while still exhibiting high optical transparency. Moreover, unlike conventional QY reduction upon increasing the excitation wavelengths, such high QY values can be maintained over all excitation wavelengths in the absorption region. Benefiting from these photophysical properties, efficient laminated LSCs were simply prepared, yielding a high optical efficiency of ∼4.4%.

中文翻译:

利用主体与客体之间的相互作用,可同时提高层压发光太阳能聚光器的有机硅烷官能化含氮碳点的量子产率和斯托克斯位移

可以使用与边缘安装的太阳能电池结合的发光太阳能集中器(LSC)来收集太阳能,而不会牺牲其透明可见性,从而促进了太阳能窗户的开发。在LSC应用中,环保的碳点(CD)有望替代含重金属的量子点。不幸的是,它们在高光密度下的固态量子产率(QY)(由叠层LSC要求)仍然很低(<30%),斯托克斯位移仅为中等(<100 nm)。在这里,我们研究了氨基硅烷官能化的含氮CD(Si-NCD)与二氧化硅基质之间的主客体相互作用,以制备有效的层压LSC。我们发现,经过真空处理的溶胶-凝胶衍生的二氧化硅基体可以有效地抑制吸收态的直接非辐射跃迁,并选择性地增强发射长波的表面态。因此,即使在高负载量(〜10 wt%)下,所形成的Si-NCDs @ SiO2复合材料同时表现出高的QYs(> 60%)和大的斯托克斯位移(> 200 nm),同时仍表现出高的光学透明性。此外,与增加激发波长时常规的QY降低不同,可以在吸收区域中的所有激发波长上保持如此高的QY值。得益于这些光物理特性,可以简单地制备有效的层压LSC,从而获得约4.4%的高光学效率。所形成的Si-NCDs @二氧化硅复合材料即使在高含量(〜10 wt%)的情况下,也同时表现出高QYs(> 60%)和大斯托克斯位移(> 200 nm),同时仍表现出高光学透明性。此外,与增加激发波长时常规的QY降低不同,可以在吸收区域中的所有激发波长上保持如此高的QY值。得益于这些光物理特性,可以简单地制备有效的层压LSC,从而获得约4.4%的高光学效率。所形成的Si-NCDs @二氧化硅复合材料即使在高含量(〜10 wt%)的情况下,也同时表现出高QYs(> 60%)和大斯托克斯位移(> 200 nm),同时仍表现出高光学透明性。此外,与增加激发波长时常规的QY降低不同,可以在吸收区域中的所有激发波长上保持如此高的QY值。得益于这些光物理特性,可以简单地制备有效的层压LSC,从而获得约4.4%的高光学效率。这样高的QY值可以在吸收区域的所有激发波长上保持。得益于这些光物理特性,可以简单地制备有效的层压LSC,从而获得约4.4%的高光学效率。这样高的QY值可以在吸收区域的所有激发波长上保持。得益于这些光物理特性,可以简单地制备有效的层压LSC,从而获得约4.4%的高光学效率。
更新日期:2020-11-25
down
wechat
bug