当前位置: X-MOL 学术BMC Genomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of homologous recombination on core genome phylogenies
BMC Genomics ( IF 4.4 ) Pub Date : 2020-11-25 , DOI: 10.1186/s12864-020-07262-x
Caroline M. Stott , Louis-Marie Bobay

Core genome phylogenies are widely used to build the evolutionary history of individual prokaryote species. By using hundreds or thousands of shared genes, these approaches are the gold standard to reconstruct the relationships of large sets of strains. However, there is growing evidence that bacterial strains exchange DNA through homologous recombination at rates that vary widely across prokaryote species, indicating that core genome phylogenies might not be able to reconstruct true phylogenies when recombination rate is high. Few attempts have been made to evaluate the robustness of core genome phylogenies to recombination, but some analyses suggest that reconstructed trees are not always accurate. In this study, we tested the robustness of core genome phylogenies to various levels of recombination rates. By analyzing simulated and empirical data, we observed that core genome phylogenies are relatively robust to recombination rates; nevertheless, our results suggest that many reconstructed trees are not completely accurate even when bootstrap supports are high. We found that some core genome phylogenies are highly robust to recombination whereas others are strongly impacted by it, and we identified that the robustness of core genome phylogenies to recombination is highly linked to the levels of selective pressures acting on a species. Stronger selective pressures lead to less accurate tree reconstructions, presumably because selective pressures more strongly bias the routes of DNA transfers, thereby causing phylogenetic artifacts. Overall, these results have important implications for the application of core genome phylogenies in prokaryotes.

中文翻译:

同源重组对核心基因组系统发育的影响

核心基因组系统发育被广泛用于建立单个原核生物物种的进化历史。通过使用数百或数千个共享基因,这些方法是重建大型菌株之间关系的金标准。但是,越来越多的证据表明,细菌菌株通过同源重组以在原核生物种之间差异很大的速率交换DNA,这表明当重组率很高时,核心基因组系统发育可能无法重建真实的系统发育。很少有人尝试评估核心基因组系统重组的稳健性,但是一些分析表明,重建的树木并不总是准确的。在这项研究中,我们测试了核心基因组系统发育对各种水平重组率的鲁棒性。通过分析模拟和经验数据,我们观察到核心基因组系统发育对重组率具有相对稳健的作用。但是,我们的结果表明,即使引导支持很高,许多重建的树也不是完全准确的。我们发现一些核心基因组系统发育对重组高度鲁棒,而另一些则受到其强烈影响,并且我们发现核心基因组系统发育对重组的鲁棒性与作用于一个物种的选择性压力水平高度相关。较高的选择压力会导致树重建的准确性降低,大概是因为选择压力更强烈地偏向了DNA转移的路径,从而导致了系统发生的假象。总体而言,这些结果对核心基因组系统发育在原核生物中的应用具有重要意义。我们观察到核心基因组系统发育对重组率相对稳定。但是,我们的结果表明,即使引导支持很高,许多重建的树也不是完全准确的。我们发现一些核心基因组系统发育对重组高度鲁棒,而另一些则受到其强烈影响,并且我们发现核心基因组系统发育对重组的鲁棒性与作用于一个物种的选择性压力水平高度相关。较高的选择压力会导致树重建的准确性降低,大概是因为选择压力更强烈地偏向了DNA转移的路径,从而导致了系统发生的假象。总体而言,这些结果对核心基因组系统发育在原核生物中的应用具有重要意义。我们观察到核心基因组系统发育对重组率相对稳定。但是,我们的结果表明,即使引导支持很高,许多重建的树也不是完全准确的。我们发现一些核心基因组系统发育对重组高度鲁棒,而另一些则受到其强烈影响,并且我们发现核心基因组系统发育对重组的鲁棒性与作用于一个物种的选择性压力水平高度相关。较高的选择压力会导致树重建的准确性降低,大概是因为选择压力更强烈地偏向了DNA转移的路径,从而导致了系统发生的假象。总体而言,这些结果对核心基因组系统发育在原核生物中的应用具有重要意义。
更新日期:2020-11-25
down
wechat
bug