当前位置: X-MOL 学术arXiv.cs.CG › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization and Computation of Feasible Trajectories for an Articulated Probe with a Variable-Length End Segment
arXiv - CS - Computational Geometry Pub Date : 2020-11-23 , DOI: arxiv-2011.11672
Ovidiu Daescu, Ka Yaw Teo

An articulated probe is modeled in the plane as two line segments, $ab$ and $bc$, joined at $b$, with $ab$ being very long, and $bc$ of some small length $r$. We investigate a trajectory planning problem involving the articulated two-segment probe where the length $r$ of $bc$ can be customized. Consider a set $P$ of simple polygonal obstacles with a total of $n$ vertices, a target point $t$ located in the free space such that $t$ cannot see to infinity, and a circle $S$ centered at $t$ enclosing $P$. The probe initially resides outside $S$, with $ab$ and $bc$ being collinear, and is restricted to the following sequence of moves: a straight line insertion of $abc$ into $S$ followed by a rotation of $bc$ around $b$. The goal is to compute a feasible obstacle-avoiding trajectory for the probe so that, after the sequence of moves, $c$ coincides with $t$. We prove that, for $n$ line segment obstacles, the smallest length $r$ for which there exists a feasible probe trajectory can be found in $O(n^{2+\epsilon})$ time using $O(n^{2+\epsilon})$ space, for any constant $\epsilon > 0$. Furthermore, we prove that all values $r$ for which a feasible probe trajectory exists form $O(n^2)$ intervals, and can be computed in $O(n^{5/2})$ time using $O(n^{2+\epsilon})$ space. We also show that, for a given $r$, the feasible trajectory space of the articulated probe can be characterized by a simple arrangement of complexity $O(n^2)$, which can be constructed in $O(n^2)$ time. To obtain our solutions, we design efficient data structures for a number of interesting variants of geometric intersection and emptiness query problems.

中文翻译:

具有可变长度末端段的铰接式探针的可行轨迹的表征和计算

铰接式探针在飞机上建模为两个线段,分别是$ ab $和$ bc $,连接点为$ b $,其中$ ab $很长,而$ bc $的长度很小。我们研究了一个轨迹规划问题,该问题涉及铰接的两段式探针,其中长度$ r $的$ bc $可以定制。考虑一组总共有$ n $个顶点的简单多边形障碍物$ P $,位于自由空间中的目标点$ t $使得$ t $看不到无穷大,以及以$ t为中心的圆$ S $ $包含$ P $。探针最初位于$ S $之外,其中$ ab $和$ bc $是共线的,并且仅限于以下移动顺序:将$ abc $直线插入$ S $,然后旋转$ bc $大约$ b $。目的是为探针计算可行的避障轨迹,以便在一系列移动之后,$ c $与$ t $一致。我们证明,对于$ n $线段障碍物,可以使用$ O(n ^)在$ O(n ^ {2+ \ epsilon})$时间找到存在可行探测轨迹的最小长度$ r $。 {2+ \ epsilon})$空间,对于任何常量$ \ epsilon> 0 $。此外,我们证明存在可行的探测轨迹的所有值$ r $均以$ O(n ^ 2)$的间隔形成,并且可以使用$ O(n在$ O(n ^ {5/2})$的时间内进行计算。 n ^ {2+ \ epsilon})$个空格。我们还表明,对于给定的$ r $,铰接式探针的可行轨迹空间可以通过复杂度$ O(n ^ 2)$的简单排列来表征,该复杂度可以用$ O(n ^ 2)构造时间。为了获得我们的解决方案,我们为许多有趣的几何交集和空度查询问题的变体设计了有效的数据结构。可以使用$ O(n ^ {2+ \ epsilon})$空间在$ O(n ^ {2+ \ epsilon})$时间中找到存在可行探针轨迹的最小长度$ r $常数$ \ epsilon> 0 $。此外,我们证明存在可行的探测轨迹的所有值$ r $均以$ O(n ^ 2)$的间隔形成,并且可以使用$ O(n在$ O(n ^ {5/2})$的时间内进行计算。 n ^ {2+ \ epsilon})$个空格。我们还表明,对于给定的$ r $,铰接式探针的可行轨迹空间可以通过复杂度$ O(n ^ 2)$的简单排列来表征,该复杂度可以用$ O(n ^ 2)构造时间。为了获得我们的解决方案,我们为许多有趣的几何交集和空度查询问题的变体设计了有效的数据结构。可以使用$ O(n ^ {2+ \ epsilon})$空间在$ O(n ^ {2+ \ epsilon})$时间中找到存在可行探针轨迹的最小长度$ r $常数$ \ epsilon> 0 $。此外,我们证明存在可行的探测轨迹的所有值$ r $均以$ O(n ^ 2)$的间隔形成,并且可以使用$ O(n在$ O(n ^ {5/2})$的时间内进行计算。 n ^ {2+ \ epsilon})$个空格。我们还表明,对于给定的$ r $,铰接式探针的可行轨迹空间可以通过复杂度$ O(n ^ 2)$的简单排列来表征,该复杂度可以用$ O(n ^ 2)构造时间。为了获得我们的解决方案,我们为许多有趣的几何交集和空度查询问题的变体设计了有效的数据结构。
更新日期:2020-11-25
down
wechat
bug