当前位置: X-MOL 学术PeerJ › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Remote sensing inversion and spatial variation of land surface temperature over mining areas of Jixi, Heilongjiang, China
PeerJ ( IF 2.7 ) Pub Date : 2020-11-25 , DOI: 10.7717/peerj.10257
Jia-Shuo Cao 1, 2 , Zheng-Yu Deng 1, 2 , Wen Li 1 , Yuan-Dong Hu 1, 2
Affiliation  

Background Jixi is a typical mining city in China that has undergone dramatic changes in its land-use pattern of mining areas over the development of its coal resources. The impacts of coal mining activities have greatly affected the regional land surface temperature and ecological system. Methods The Landsat 8 Operational Land Imager (OLI) data from 2015 and 2019 were used from the Jiguan, Didao, and Chengzihe District of Jixi in Heilongjiang, China as the study area. The calculations to determine the land-use classification, vegetation coverage, and land surface temperature (LST) were performed using ArcGIS10.5 and ENVI 5.3 software packages. A correlation analysis revealed the impact of land-use type, vegetation coverage, and coal mining activities on LSTs. Results The results show significant spatial differentiation in the LSTs of Jixi City. The LSTs for various land-use types were ranked from high to low as follows: mining land > construction land > grassland > cultivated land > forest land > water area. The LST was lower in areas with high vegetation coverage than in other areas. For every 0.1 increase in vegetation coverage, the LST is expected to drop by approximately 0.75 °C. An analysis of mining land patches indicates that the patch area of mining lands has a significant positive correlation with both the average and maximum patch temperatures. The average patch temperature shows a logarithmic increase with the growth of the patch area, and within 200,000 m2, the average patch temperature increases significantly. The maximum patch temperature shows a linear increase with the patch area growth, and for every 100,000 m2 increase in the patch area of mining lands, the maximum patch temperature increases by approximately 0.81 °C. The higher the average patch temperature of mining land, the higher the temperature in its buffer zone, and the greater its influence scope. This study provides a useful reference for exploring the warming effects caused by coal mining activities and the definition of its influence scope.
更新日期:2020-11-25
down
wechat
bug