当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrodynamic Force, Casimir Effect, and Stiction Mitigation in Silicon Carbide Nanoelectromechanical Switches
Small ( IF 13.3 ) Pub Date : 2020-11-25 , DOI: 10.1002/smll.202005594
Rui Yang 1, 2 , Jiang Qian 1 , Philip X.‐L. Feng 1, 3
Affiliation  

Logic switches enabled by nanoelectromechanical systems (NEMS) offer abrupt on/off‐state transition with zero off‐state leakage and minimal subthreshold swing, making them uniquely suited for enhancing mainstream electronics in a range of applications, such as power gating, high‐temperature and high‐voltage logic, and ultralow‐power circuits requiring zero standby leakage. As NEMS switches are scaled with genuinely nanoscale gaps and contacts, quantum mechanical electrodynamic force (EDF) takes an important role and may be the ultimate cause of the plaguing problem of stiction. Here, combined with experiments on three‐terminal silicon carbide (SiC) NEMS switches, a theoretical investigation is performed to elucidate the origin of EDF and Casimir effect leading to stiction, and to develop a stiction‐mitigation design. The EDF calculation with full Lifshitz formula using the actual material and device parameters is provided. Finite element modeling and analytical calculations demonstrate that EDF becomes dominant over elastic restoring force in such SiC NEMS when the switching gap shrinks to a few nanometers, leading to irreversible stiction at contact. Artificially corrugated contact surfaces are designed to reduce the contact area and the EDF, thus evading stiction. This rational surface engineering reduces the EDF down to 4% compared with the case of unengineered, flat contact surfaces.

中文翻译:

碳化硅纳米机电开关中的电动力,卡西米尔效应和静摩擦减轻

由纳米机电系统(NEMS)启用的逻辑开关可提供突然的通/断状态转换,具有零断态泄漏和最小的亚阈值摆幅,使其特别适合增强各种应用中的主流电子设备,例如电源门控,高温高压逻辑和超低功耗电路,要求零待机泄漏。由于NEMS开关具有真正的纳米级间隙和触点,因此量子机械电动势(EDF)发挥着重要作用,并且可能是导致粘滞问题困扰的最终原因。在这里,结合三端碳化硅(SiC)NEMS开关的实验,进行了理论研究,以阐明EDF和卡西米尔效应导致粘滞的起源,并开发出粘滞缓解设计。提供了使用实际材料和设备参数的完整Lifshitz公式进行的EDF计算。有限元建模和分析计算表明,当开关间隙缩小到几纳米时,EDF在这种SiC NEMS中的弹性恢复力上占主导地位,从而导致不可逆的接触静摩擦力。人工波纹状的接触表面旨在减少接触面积和EDF,从而避免了静摩擦。这个理性 人工波纹状的接触表面旨在减少接触面积和EDF,从而避免了静摩擦。这个理性 人工波纹状的接触表面旨在减少接触面积和EDF,从而避免了静摩擦。这个理性与未经工程处理的平坦接触表面相比,表面工程处理可将EDF降低至4%。
更新日期:2020-12-22
down
wechat
bug