当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interface Engineering of Co‐LDH@MOF Heterojunction in Highly Stable and Efficient Oxygen Evolution Reaction
Advanced Science ( IF 15.1 ) Pub Date : 2020-11-25 , DOI: 10.1002/advs.202002631
Zhenxing Li 1 , Xin Zhang 1 , Yikun Kang 2 , Cheng Cheng Yu 1 , Yangyang Wen 1 , Mingliang Hu 1 , Dong Meng 3 , Weiyu Song 2 , Yang Yang 3
Affiliation  

The electrochemical splitting of water into hydrogen and oxygen is considered one of the most promising approaches to generate clean and sustainable energy. However, the low efficiency of the oxygen evolution reaction (OER) acts as a bottleneck in the water splitting process. Herein, interface engineering heterojunctions between ZIF‐67 and layered double hydroxide (LDH) are designed to enhance the catalytic activity of the OER and the stability of Co‐LDH. The interface is built by the oxygen (O) of Co‐LDH and nitrogen (N) of the 2‐methylimidazole ligand in ZIF‐67, which modulates the local electronic structure of the catalytic active site. Density functional theory calculations demonstrate that the interfacial interaction can enhance the strength of the CoOout bond in Co‐LDH, which makes it easier to break the H‐Oout bond and results in a lower free energy change in the potential‐determining step at the heterointerface in the OER process. Therefore, the Co‐LDH@ZIF‐67 exhibits superior OER activity with a low overpotential of 187 mV at a current density of 10 mA cm−2 and long‐term electrochemical stability for more than 50 h. This finding provides a design direction for improving the catalytic activity of OER.

中文翻译:

高稳定高效析氧反应中Co-LDH@MOF异质结的界面工程

将水电化学分解为氢气和氧气被认为是产生清洁和可持续能源的最有前途的方法之一。然而,析氧反应(OER)的低效率成为水分解过程的瓶颈。在此,ZIF-67和层状双氢氧化物(LDH)之间的界面工程异质结旨在增强OER的催化活性和Co-LDH的稳定性。该界面由 Co-LDH 的氧 (O) 和 ZIF-67 中 2-甲基咪唑配体的氮 (N) 构建,调节催化活性位点的局部电子结构。密度泛函理论计算表明,界面相互作用可以增强Co-LDH中Co - O键的强度,从而更容易破坏H-O键,从而导致势确定中较低的自由能变化OER 过程中的异质界面步骤。因此,Co-LDH@ZIF-67表现出优异的OER活性,在10 mA cm -2的电流密度下具有187 mV的低过电势和超过50 h的长期电化学稳定性。这一发现为提高OER催化活性提供了设计方向。
更新日期:2021-01-20
down
wechat
bug