当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shear Localization in Metallic Materials at High Strain Rates
Progress in Materials Science ( IF 37.4 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.pmatsci.2020.100755
Na Yan , Zezhou Li , Yongbo Xu , Marc A. Meyers

Abstract Three factors govern adiabatic shear localization: strain hardening (or softening), strain-rate hardening, and thermal softening. It is typically associated with large shear strains (>1), high strain rates (103-107 s-1), and high temperatures (40-100% of melting point), all of which happen within narrow regions with widths of about 1-200 μm. It is often an undesirable phenomenon, leading to failure, but there are situations where it is desirable, e. g., the generation of machining chips. Here, we review the development of both theoretical and experimental achievements, from the initiation of shear bands to their propagation with emphasis on three aspects: novel experimental techniques, novel materials, and nano/microstructural effects. The principal characteristics of adiabatic shear bands in metallic materials at the nano- and micro-scale are described. Bands that were formerly identified as transformed actually consist of nanocrystalline/ultrafine grains. These grains result from the breakup of the microstructure by a rotational recrystallization process. The evolution of the microstructure inside shear bands and their interactions for hcp, bcc, and fcc alloys, high-entropy alloys, nanocrystalline alloys, and metallic glasses are analyzed mechanistically. The gaps in the field and opportunities for future research are identified. Modern experimental characterization and computational techniques enable a more profound and predictive understanding of adiabatic localization and its avoidance in advanced materials.

中文翻译:

高应变率下金属材料的剪切局部化

摘要 三个因素决定了绝热剪切局部化:应变硬化(或软化)、应变速率硬化和热软化。它通常与大剪切应变 (>1)、高应变率 (103-107 s-1) 和高温(熔点的 40-100%)有关,所有这些都发生在宽度约为 1 的狭窄区域内-200 微米。这通常是一种不受欢迎的现象,导致失败,但也有需要的情况,例如产生加工切屑。在这里,我们回顾了理论和实验成果的发展,从剪切带的开始到它们的传播,重点放在三个方面:新的实验技术、新材料和纳米/微结构效应。描述了金属材料在纳米和微米尺度上绝热剪切带的主要特征。以前被确定为转变的带实际上由纳米晶/超细晶粒组成。这些晶粒是由旋转再结晶过程破坏微观结构造成的。剪切带内部微观结构的演变及其对 hcp、bcc 和 fcc 合金、高熵合金、纳米晶合金和金属玻璃的相互作用进行了机械分析。确定了该领域的差距和未来研究的机会。现代实验表征和计算技术使对绝热定位及其在先进材料中的避免有了更深刻和更预测的理解。以前被确定为转变的带实际上由纳米晶/超细晶粒组成。这些晶粒是由旋转再结晶过程破坏微观结构造成的。剪切带内部微观结构的演变及其对 hcp、bcc 和 fcc 合金、高熵合金、纳米晶合金和金属玻璃的相互作用进行了机械分析。确定了该领域的差距和未来研究的机会。现代实验表征和计算技术使对绝热定位及其在先进材料中的避免有了更深刻和更预测的理解。以前被确定为转变的带实际上由纳米晶/超细晶粒组成。这些晶粒是由旋转再结晶过程破坏微观结构造成的。剪切带内部微观结构的演变及其对 hcp、bcc 和 fcc 合金、高熵合金、纳米晶合金和金属玻璃的相互作用进行了机械分析。确定了该领域的差距和未来研究的机会。现代实验表征和计算技术使对绝热定位及其在先进材料中的避免有了更深刻和更预测的理解。剪切带内部微观结构的演变及其对 hcp、bcc 和 fcc 合金、高熵合金、纳米晶合金和金属玻璃的相互作用进行了机械分析。确定了该领域的差距和未来研究的机会。现代实验表征和计算技术使对绝热定位及其在先进材料中的避免有了更深刻和更预测的理解。剪切带内部微观结构的演变及其对 hcp、bcc 和 fcc 合金、高熵合金、纳米晶合金和金属玻璃的相互作用进行了机械分析。确定了该领域的差距和未来研究的机会。现代实验表征和计算技术使对绝热定位及其在先进材料中的避免有了更深刻和更预测的理解。
更新日期:2020-11-01
down
wechat
bug