当前位置: X-MOL 学术arXiv.cs.GT › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MIMO Radar Waveform-Filter Design for Extended Target Detection from a View of Games
arXiv - CS - Computer Science and Game Theory Pub Date : 2020-11-23 , DOI: arxiv-2011.11346
Zhou Xu, Chongyi Fan, Xiaotao Huang

This paper studies the Two-Person Zero Sum(TPZS) game between a Multiple-Input Multiple-Output(MIMO) radar and an extended target with payoff function being the output Signal-to-Interference-pulse-Noise Ratio(SINR) at the radar receiver. The radar player wants to maximize SINR by adjusting its transmit waveform and receive filter. Conversely, the target player wants to minimize SINR by changing its Target Impulse Response(TIR) from a scaled sphere centered around a certain TIR. The interaction between them forms a Stackelberg game where the radar player acts as a leader. The Stackelberg equilibrium strategy of radar, namely robust or minimax waveform-filter pair, for three different cases are taken into consideration. In the first case, Energy Constraint(EC) on transmit waveform is introduced, where we theoretically prove that the Stackelberg equilibrium is also the Nash equilibrium of the game, and propose Algorithm 1 to solve the optimal waveform-filter pair through convex optimization. Note that the EC can't meet the demands of radar transmitter due to high Peak Average to power Ratio(PAR) of the transmit waveform, thus Constant Modulus and Similarity Constraint(CM-SC) on waveform is considered in the second case, and Algorithm 2 is proposed to solve this problem, where we theoretically prove the existence of Nash equilibrium for its Semi-Definite Programming(SDP) relaxation form. And the optimal waveform-filter pair is solved by calculating the Nash equilibrium followed by the randomization schemes. In the third case,...

中文翻译:

从游戏角度出发扩展目标检测的MIMO雷达波形滤波器设计

本文研究了多输入多输出(MIMO)雷达和扩展目标之间的两人零和(TPZS)博弈,其收益函数为在输出端的输出信噪比(SINR)。雷达接收器。雷达播放器希望通过调整其发射波形和接收滤波器来最大化SINR。相反,目标玩家希望通过从围绕某个TIR的缩放球更改其目标冲激响应(TIR)来最小化SINR。它们之间的相互作用形成了Stackelberg游戏,雷达玩家扮演了领导者的角色。考虑了三种情况下雷达的Stackelberg平衡策略,即鲁棒或极小波形滤波器对。在第一种情况下,引入了发射波形上的能量约束(EC),我们在理论上证明了Stackelberg均衡也是博弈的Nash均衡,并提出了算法1通过凸优化来求解最优波形滤波器对。请注意,由于发射波形的峰值平均功率比(PAR)高,EC无法满足雷达发射机的要求,因此在第二种情况下考虑了波形的恒定模量和相似性约束(CM-SC),并且提出了算法2来解决这个问题,在理论上我们证明了纳什均衡的半定规划(SDP)松弛形式的存在。通过计算纳什均衡,然后采用随机化方案,可以解决最优的波形滤波器对。在第三种情况下,并提出算法1,通过凸优化求解最优波形滤波器对。请注意,由于发射波形的峰值平均功率比(PAR)高,EC无法满足雷达发射机的要求,因此在第二种情况下考虑了波形的恒定模量和相似性约束(CM-SC),并且提出了算法2来解决这个问题,在理论上我们证明了纳什均衡的半定规划(SDP)松弛形式的存在。通过计算纳什均衡和随机方案来求解最优波形滤波器对。在第三种情况下,并提出算法1,通过凸优化求解最优波形滤波器对。请注意,由于发射波形的峰值平均功率比(PAR)高,EC无法满足雷达发射机的要求,因此在第二种情况下考虑了波形的恒定模量和相似性约束(CM-SC),并且提出了算法2来解决这个问题,在理论上我们证明了纳什均衡的半定规划(SDP)松弛形式的存在。通过计算纳什均衡和随机方案来求解最优波形滤波器对。在第三种情况下,因此,在第二种情况下考虑了波形的恒定模量和相似性约束(CM-SC),并提出了算法2来解决该问题,在理论上我们证明了其半定规划(SDP)松弛形式存在纳什均衡。通过计算纳什均衡,然后采用随机化方案,可以解决最优的波形滤波器对。在第三种情况下,因此,在第二种情况下考虑了波形的恒定模量和相似性约束(CM-SC),并提出了算法2来解决该问题,我们在理论上证明了其半定规划(SDP)松弛形式存在纳什均衡。通过计算纳什均衡,然后采用随机化方案,可以解决最优的波形滤波器对。在第三种情况下,
更新日期:2020-11-25
down
wechat
bug