当前位置: X-MOL 学术Nat. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single artificial atoms in silicon emitting at telecom wavelengths
Nature Electronics ( IF 34.3 ) Pub Date : 2020-11-23 , DOI: 10.1038/s41928-020-00499-0
W. Redjem , A. Durand , T. Herzig , A. Benali , S. Pezzagna , J. Meijer , A. Yu. Kuznetsov , H. S. Nguyen , S. Cueff , J.-M. Gérard , I. Robert-Philip , B. Gil , D. Caliste , P. Pochet , M. Abbarchi , V. Jacques , A. Dréau , G. Cassabois

Given its potential for integration and scalability, silicon is likely to be a key platform for large-scale quantum technologies. Individual electron-encoded artificial atoms, formed by either impurities or quantum dots, have emerged as a promising solution for silicon-based integrated quantum circuits. However, single qubits featuring an optical interface, which is needed for long-distance exchange of information, have not yet been isolated in silicon. Here we report the isolation of single optically active point defects in a commercial silicon-on-insulator wafer implanted with carbon atoms. These artificial atoms exhibit a bright, linearly polarized single-photon emission with a quantum efficiency of the order of unity. This single-photon emission occurs at telecom wavelengths suitable for long-distance propagation in optical fibres. Our results show that silicon can accommodate single isolated optical point defects like in wide-bandgap semiconductors, despite a small bandgap (1.1 eV) that is unfavourable for such observations.



中文翻译:

硅以电信波长发射的单个人造原子

鉴于其集成和可扩展性的潜力,硅可能会成为大规模量子技术的关键平台。由杂质或量子点形成的单个电子编码人工原子已经成为基于硅的集成量子电路的有希望的解决方案。但是,长距离信息交换所需的具有光接口的单量子位尚未在硅片中隔离。在这里,我们报告了在植入了碳原子的商用绝缘体上硅晶圆中单个旋光点缺陷的隔离情况。这些人造原子表现出明亮的,线性极化的单光子发射,且量子效率为单位数量级。这种单光子发射发生在适合于光纤中长距离传播的电信波长处。

更新日期:2020-11-25
down
wechat
bug