当前位置: X-MOL 学术Ultrasonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of a resonant Luneburg lens for surface acoustic waves
Ultrasonics ( IF 4.2 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.ultras.2020.106306
Rafael Fuentes-Domínguez , Mengting Yao , Andrea Colombi , Paul Dryburgh , Don Pieris , Alexander Jackson-Crisp , Daniel Colquitt , Adam Clare , Richard J. Smith , Matt Clark

In this work we employ additive manufacturing to print a circular array of micropillars on an aluminium slab turning its top surface into a graded index metasurface for surface acoustic waves (SAW). The graded metasurface reproduces a Luneburg lens capable of focusing plane SAWs to a point. The graded index profile is obtained by exploiting the dispersion properties of the metasurface arising from the well-known resonant coupling between the micropillars (0.5 mm diameter and variable length ∼3 mm) and the surface waves propagating in the substrate. From the analytical formulation of the metasurface's dispersion curves, a slow phase velocity mode is shown to arise from the hybridisation of the surface wave with the pillar resonance. This is used to compute the radial height profile corresponding to the refractive index given by Luneburg's equation. An initial validation of the lens design, achieved through ray theory, shows that ray trajectories have a strong frequency dependence, meaning that the lens will only work on a narrow band. An ultrasonic experiment at 500 kHz where plane SAWs are generated with a piezoelectric transducer and a laser scanner measures the out of plane displacement on the metasurface, validates the actual lens performance and the manufacturing technique. Finally, comparison between the ray analysis and experimental results offers insight into the behaviour of this type of metasurface especially in the proximity of the acoustic bandgaps and highlights the possibility for acoustic shielding.

中文翻译:

表面声波共振Luneburg透镜的设计

在这项工作中,我们采用增材制造在铝板上打印圆形微柱阵列,将其顶面变成表面声波 (SAW) 的渐变折射率超表面。渐变超表面再现了 Luneburg 透镜,能够将平面 SAW 聚焦到一个点。渐变折射率分布是通过利用微柱(0.5 毫米直径和可变长度~3 毫米)与在基板中传播的表面波之间众所周知的共振耦合产生的超表面的色散特性获得的。从超表面色散曲线的解析公式可以看出,表面波与柱共振的混合产生了慢相速度模式。这用于计算对应于 Luneburg' 给出的折射率的径向高度分布 s 方程。通过光线理论实现的透镜设计的初步验证表明,光线轨迹具有很强的频率依赖性,这意味着透镜只能在窄带上工作。在 500 kHz 的超声波实验中,使用压电换能器生成平面 SAW,激光扫描仪测量超表面上的平面外位移,验证了实际的透镜性能和制造技术。最后,射线分析和实验结果之间的比较提供了对这种类型的超表面行为的洞察,尤其是在声带隙附近的行为,并突出了声屏蔽的可能性。这意味着镜头只能在窄带上工作。在 500 kHz 的超声波实验中,使用压电换能器生成平面 SAW,激光扫描仪测量超表面上的平面外位移,验证了实际的透镜性能和制造技术。最后,射线分析和实验结果之间的比较提供了对这种类型的超表面行为的洞察,尤其是在声带隙附近的行为,并突出了声屏蔽的可能性。这意味着镜头只能在窄带上工作。在 500 kHz 的超声波实验中,使用压电换能器生成平面 SAW,激光扫描仪测量超表面上的平面外位移,验证了实际的透镜性能和制造技术。最后,射线分析和实验结果之间的比较提供了对这种类型的超表面行为的洞察,尤其是在声带隙附近的行为,并突出了声屏蔽的可能性。
更新日期:2021-03-01
down
wechat
bug