当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal management of hydrogen refuelling station housing on an annual level
International Journal of Hydrogen Energy ( IF 7.2 ) Pub Date : 2020-11-24 , DOI: 10.1016/j.ijhydene.2020.11.013
Ankica Kovač , Doria Marciuš , Matej Paranos

A housing insulation of hydrogen refuelling station is vital from the aspect of safe operation of equipment in an environment that is installed. To secure hydrogen supply during the whole year, this work brings the solution for both cooling and heating insulation equipment inside of hydrogen refuelling station installed in Croatia, Europe. This hydrogen refuelling station was designed as an autonomous photovoltaic-hydrogen system. In the interest of improving its energy efficiency, an optimal thermal management strategy was proposed. To select the best technological solution for thermal management design which will maintain optimal temperature range inside the housing in cold and warm months, a detailed analysis of the system components thermodynamic parameters was performed. Optimal operating temperatures were established to be 25 °C in summer and 16 °C in winter, considering components working specifications. Insulation, type of cooling units, and heaters have been selected according to the HRN EN 12831 and VDI 2078 standards, while the regime of the heating and cooling system has been selected based on the station's indoor air temperature. The annual required heating and cooling energy were calculated according to HRN EN ISO 13790 standard, amounting to 1135.55 kW h and 1219.55 kW h, respectively. Annual energy share obtained from solar power plant used for the heating and cooling system resulted in 5%. The calculated thermal management system load turned out to be 1.437 kW.



中文翻译:

每年对加氢站房屋进行热管理

从设备在安装环境中的安全运行方面来看,加氢站的外壳绝缘至关重要。为保障全年氢气供应,这项工作为安装在欧洲克罗地亚的加氢站内的冷却和加热绝缘设备提供了解决方案。这个加氢站被设计成一个自主的光伏氢系统。为了提高其能源效率,提出了一种最佳热管理策略。为了选择最佳的热管理设计技术解决方案,以在寒冷和温暖的月份保持外壳内部的最佳温度范围,对系统组件的热力学参数进行了详细分析。考虑到组件的工作规范,最佳工作温度确定为夏季 25 °C 和冬季 16 °C。根据 HRN EN 12831 和 VDI 2078 标准选择了绝缘、冷却装置类型和加热器,而加热和冷却系统的方案则根据车站的室内空气温度进行选择。根据 HRN EN ISO 13790 标准计算,每年所需的加热和冷却能量分别为 1135.55 kW h 和 1219.55 kW h。从太阳能发电厂获得的用于加热和冷却系统的年能源份额为 5%。计算得出的热管理系统负载为 1.437 kW。和加热器是根据 HRN EN 12831 和 VDI 2078 标准选择的,而加热和冷却系统的方式是根据车站的室内空气温度选择的。根据 HRN EN ISO 13790 标准计算,每年所需的加热和冷却能量分别为 1135.55 kW h 和 1219.55 kW h。从太阳能发电厂获得的用于加热和冷却系统的年能源份额为 5%。计算得出的热管理系统负载为 1.437 kW。和加热器是根据 HRN EN 12831 和 VDI 2078 标准选择的,而加热和冷却系统的方式是根据车站的室内空气温度选择的。根据 HRN EN ISO 13790 标准计算,每年所需的加热和冷却能量分别为 1135.55 kW h 和 1219.55 kW h。从太阳能发电厂获得的用于加热和冷却系统的年能源份额为 5%。计算得出的热管理系统负载为 1.437 kW。分别。从太阳能发电厂获得的用于加热和冷却系统的年能源份额为 5%。计算得出的热管理系统负载为 1.437 kW。分别。从太阳能发电厂获得的用于加热和冷却系统的年能源份额为 5%。计算得出的热管理系统负载为 1.437 kW。

更新日期:2020-11-24
down
wechat
bug