当前位置: X-MOL 学术Appl. Mathmat. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlling the natural convection of a non-Newtonian fluid using a flexible fin
Applied Mathematical Modelling ( IF 5 ) Pub Date : 2021-04-01 , DOI: 10.1016/j.apm.2020.11.029
Mohammad Shahabadi , S.A.M. Mehryan , Mohammad Ghalambaz , Muneer Ismael

Abstract In the present study, the flow and heat transfer of a power-law non-Newtonian fluid in a cavity are addressed. The top and bottom walls of the cavity as well insulated, the left vertical wall is at a hot temperature, and the right wall is at a low temperature. A flexible elastic fin is mounted at the hot wall of the cavity. The non-Newtonian fluid circulates inside the cavity due to the buoyancy forces. Fluid-Structure Interaction (FSI) and the non-Newtonian flow within the cavity and the hot fin are coupled. The flow interaction with the fin leads to the deformation of the fin, and the change in the shape of the fin changes the flow and heat transfer. Hence, the coupling between the fluid and the structure is two ways. The Arbitrary Lagrangian-Eulerian (ALE) along the moving mesh method is employed to model the deflection of the structure inside the fluid domain. The finite element method is adopted to solve the governing equations. The results show that the deflection of the fin is higher for a dilatant non-Newtonian fluid, compared to the pseudoplastic and Newtonian fluids. The number of flow vortexes and flow hydrodynamic notably change by the variation non-Newtonian index. The non-Newtonian effects produce minimal effects on the heat transfer rate. Moving from pseudoplastic effects to Newtonian and dilatant effects reduces the heat transfer rate and increases the internal stresses in the fin. Moreover, the maximum stress in stiff-fins is higher than soft-fins.

中文翻译:

使用柔性翅片控制非牛顿流体的自然对流

摘要 在本研究中,解决了空腔中幂律非牛顿流体的流动和传热问题。腔体的顶壁和底壁也隔热,左侧垂直壁处于高温状态,右侧壁处于低温状态。一个柔性弹性翅片安装在型腔的热壁上。由于浮力,非牛顿流体在腔内循环。流固耦合 (FSI) 和腔内的非牛顿流动与热翅片相互耦合。与翅片的流动相互作用导致翅片变形,翅片形状的变化改变了流动和传热。因此,流体和结构之间的耦合是两种方式。沿移动网格方法的任意拉格朗日-欧拉 (ALE) 用于模拟流体域内结构的偏转。采用有限元法求解控制方程。结果表明,与假塑性流体和牛顿流体相比,膨胀的非牛顿流体的翅片挠度更高。流动漩涡的数量和流动的流体动力学因非牛顿指数的变化而显着变化。非牛顿效应对传热速率的影响最小。从假塑性效应转变为牛顿效应和膨胀效应会降低传热率并增加翅片中的内应力。此外,刚性翅片的最大应力高于软翅片。结果表明,与假塑性流体和牛顿流体相比,膨胀的非牛顿流体的翅片挠度更高。流动漩涡的数量和流动的流体动力学因非牛顿指数的变化而显着变化。非牛顿效应对传热速率的影响最小。从假塑性效应转变为牛顿效应和膨胀效应会降低传热率并增加翅片中的内应力。此外,刚性翅片的最大应力高于软翅片。结果表明,与假塑性流体和牛顿流体相比,膨胀的非牛顿流体的翅片挠度更高。流动漩涡的数量和流动的流体动力学因非牛顿指数的变化而显着变化。非牛顿效应对传热速率的影响最小。从假塑性效应转变为牛顿效应和膨胀效应会降低传热率并增加翅片中的内应力。此外,刚性翅片的最大应力高于软翅片。非牛顿效应对传热速率的影响最小。从假塑性效应转变为牛顿效应和膨胀效应会降低传热率并增加翅片中的内应力。此外,刚性翅片的最大应力高于软翅片。非牛顿效应对传热速率的影响最小。从假塑性效应转变为牛顿效应和膨胀效应会降低传热率并增加翅片中的内应力。此外,刚性翅片的最大应力高于软翅片。
更新日期:2021-04-01
down
wechat
bug