当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Carbon-Based DNA Framework Nano–Bio Interface for Biosensing with High Sensitivity and a High Signal-to-Noise Ratio
ACS Sensors ( IF 8.9 ) Pub Date : 2020-11-23 , DOI: 10.1021/acssensors.0c01745
Jing Su 1, 2 , Wenhan Liu 3, 4 , Shixing Chen 3 , Wangping Deng 3 , Yanzhi Dou 3, 4 , Zhihan Zhao 3 , Jianyong Li 3, 4 , Zhenhua Li 3, 4 , Heng Yin 5 , Xianting Ding 2 , Shiping Song 1, 3
Affiliation  

Biosensing interface based on screen-printed carbon electrodes (SPCE) has been widely used for electrochemical biosensors in the field of medical diagnostics, food safety, and environmental monitoring. Nevertheless, SPCE always has a rough surface, which is easy to result in the disorder of nucleic acid capture probes, the nonspecific adsorption of signaling probes, the steric hindrance of target binding, and decrease in the signal-to-noise ratio and sensitivity of biosensors. So far, it still remains extremely challenging to develop high-efficiency carbon-based biosensing interfaces, especially for DNA probe-based assembly and functionalization. In this paper, we first used a specific DNA framework, DNA tetrahedron to solve the defects of the carbon interface, improving the biosensing ability of SPCE. With covalent coupling, the DNA tetrahedron could be immobilized on the carbon surface. Biosensing probe sequences extending from the DNA tetrahedron can be changed for different target molecules. We demonstrated that the improved SPCE could be applied for the detection of a variety of bioactive molecules. Typically, we designed gap hybridization, aptamer “sandwich” and aptamer competition reduction strategy for the detection of miRNA-141, thrombin, and ATP, respectively. High signal-to-noise ratio, sensitivity, and specificity were obtained for all of these kinds. Especially, the DNA tetrahedron-modified SPCE can work well with serum samples. The carbon-based DNA framework nano–bio interface would expand the use of SPCE and make electrochemical biosensors more available and valuable in clinical diagnosis.

中文翻译:

基于碳的DNA框架纳米生物接口,可实现高灵敏度和高信噪比的生物传感

基于丝网印刷碳电极(SPCE)的生物传感界面已在医学诊断,食品安全和环境监测领域中广泛用于电化学生物传感器。尽管如此,SPCE始终具有粗糙的表面,这很容易导致核酸捕获探针的紊乱,信号探针的非特异性吸附,靶标结合的空间位阻以及信噪比和灵敏度的降低。生物传感器。到目前为止,开发高效的基于碳的生物传感界面仍然非常具有挑战性,尤其是对于基于DNA探针的组装和功能化。在本文中,我们首先使用特定的DNA框架DNA四面体来解决碳界面的缺陷,提高SPCE的生物传感能力。通过共价偶联,DNA四面体可以固定在碳表面上。从DNA四面体延伸的生物传感探针序列可以针对不同的目标分子进行更改。我们证明了改进的SPCE可用于检测多种生物活性分子。通常,我们设计了缺口杂交,适体“三明治”和适体竞争减少策略来分别检测miRNA-141,凝血酶和ATP。所有这些类型均获得了高信噪比,灵敏度和特异性。特别是,DNA四面体修饰的SPCE可以很好地与血清样品一起使用。基于碳的DNA框架纳米生物接口将扩大SPCE的应用范围,并使电化学生物传感器在临床诊断中更加实用和有价值。从DNA四面体延伸的生物传感探针序列可以针对不同的目标分子进行更改。我们证明了改进的SPCE可用于检测多种生物活性分子。通常,我们设计了缺口杂交,适体“三明治”和适体竞争减少策略来分别检测miRNA-141,凝血酶和ATP。所有这些类型均获得了高信噪比,灵敏度和特异性。特别是,DNA四面体修饰的SPCE可以很好地与血清样品一起使用。基于碳的DNA框架纳米生物接口将扩大SPCE的应用范围,并使电化学生物传感器在临床诊断中更加实用和有价值。从DNA四面体延伸的生物传感探针序列可以针对不同的目标分子进行更改。我们证明了改进的SPCE可用于检测多种生物活性分子。通常,我们设计了缺口杂交,适体“三明治”和适体竞争减少策略来分别检测miRNA-141,凝血酶和ATP。所有这些类型均获得了高信噪比,灵敏度和特异性。特别是,DNA四面体修饰的SPCE可以很好地与血清样品一起使用。基于碳的DNA框架纳米生物接口将扩大SPCE的应用范围,并使电化学生物传感器在临床诊断中更加实用和有价值。我们证明了改进的SPCE可用于检测多种生物活性分子。通常,我们设计了缺口杂交,适体“三明治”和适体竞争减少策略来分别检测miRNA-141,凝血酶和ATP。所有这些类型均获得了高信噪比,灵敏度和特异性。特别是,DNA四面体修饰的SPCE可以很好地与血清样品一起使用。基于碳的DNA框架纳米生物接口将扩大SPCE的应用范围,并使电化学生物传感器在临床诊断中更加实用和有价值。我们证明了改进的SPCE可用于检测多种生物活性分子。通常,我们设计了缺口杂交,适体“三明治”和适体竞争减少策略来分别检测miRNA-141,凝血酶和ATP。所有这些类型均获得了高信噪比,灵敏度和特异性。特别是,DNA四面体修饰的SPCE可以很好地与血清样品一起使用。基于碳的DNA框架纳米生物界面将扩大SPCE的应用范围,并使电化学生物传感器在临床诊断中更加实用和有价值。所有这些类型均获得了高信噪比,灵敏度和特异性。特别是,DNA四面体修饰的SPCE可以很好地与血清样品一起使用。基于碳的DNA框架纳米生物接口将扩大SPCE的应用范围,并使电化学生物传感器在临床诊断中更加实用和有价值。所有这些类型均获得了高信噪比,灵敏度和特异性。特别是,DNA四面体修饰的SPCE可以很好地与血清样品一起使用。基于碳的DNA框架纳米生物界面将扩大SPCE的应用范围,并使电化学生物传感器在临床诊断中更加实用和有价值。
更新日期:2020-12-24
down
wechat
bug