当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors
Light: Science & Applications ( IF 19.4 ) Pub Date : 2020-11-23 , DOI: 10.1038/s41377-020-00430-4
Yuhan Wang , Zhonghui Nie , Fengqiu Wang

Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.



中文翻译:

二维半导体中载流子弛豫动力学的调制

由于强大的库仑相互作用,二维(2D)半导体可以支持具有大结合能和复杂多粒子态的激子。它们强大的光-质耦合和新兴的激子现象使其成为下一代光电和谷电子器件的潜在候选者。光激发态的弛豫动力学是激子物理学的重要组成部分,它直接影响大多数光子器件的量子效率和工作带宽。在这里,我们总结了在2D半导体中探测和调制光载流子弛豫动力学的最新努力。我们根据与它们相关的松弛途径或机制对这些结果进行分类。讨论的方法包括定制样本属性,例如缺陷分布和能带结构,并施加电场和机械应变等外部刺激。特别强调讨论2D半导体的独特功能,包括增强的库仑相互作用,对周围环境的敏感性,灵活的范德华(vdW)异质结构构造以及2D过渡金属二卤化金属(TMD)的简并的波谷/自旋指数),并在光子载体松弛过程中表现出来,以及如何进行操纵。可以用来调节光子弛豫动力学的广泛物理机制对于理解和利用2D半导体中的激子态是有帮助的。对周围环境的敏感性,灵活的范德华(vdW)异质结构构造以及2D过渡金属二卤化金属(TMD)的非简并谷/自旋指数在光载流子弛豫过程中表现出来,并且它们如何被操纵。可以用来调节光子弛豫动力学的广泛物理机制对于理解和利用2D半导体中的激子态是有帮助的。对周围环境的敏感性,灵活的范德华(vdW)异质结构构造以及2D过渡金属二卤化金属(TMD)的非简并谷/自旋指数在光载流子弛豫过程中表现出来,并且它们如何被操纵。可以用来调节光子弛豫动力学的广泛物理机制对于理解和利用2D半导体中的激子态是有帮助的。

更新日期:2020-11-23
down
wechat
bug