当前位置: X-MOL 学术Commun. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Critical charge transport networks in doped organic semiconductors
Communications Materials Pub Date : 2020-11-23 , DOI: 10.1038/s43246-020-00091-1
Andreas Hofacker

Intrinsic organic small molecule and polymer materials are insulators. The discovery that polymers can be made highly conductive by doping has therefore sparked strong interest in this novel class of conductors. More recently, efficient doping of small molecule materials has also been achieved and is now a key technology in the multi-billion dollar organic light emitting diode industry. Nevertheless, a comprehensive description of charge transport in the presence of doping is still missing for organic semiconductors with localized electronic states. Here, we present a theoretical and computational approach based on percolation theory and quantitatively predict experimental results from the literature for the archetype small molecule materials ZnPc, F8ZnPc and C60. We show that transport in the complex potential landscape that emerges from the presence of localized charges can be aptly analyzed by focusing on the network properties of transport paths instead of just the critical resistance. Specifically, we compute the activation energy of conductivity and the Seebeck energy and yield excellent agreement with experimental data. The previously unexplained increase of the activation energy at high doping concentrations can be clarified by our approach.



中文翻译:

掺杂有机半导体中的关键电荷传输网络

本征有机小分子和聚合物材料是绝缘体。因此,可以通过掺杂使聚合物具有高导电性的发现引起了人们对这种新型导体的浓厚兴趣。最近,也已经实现了对小分子材料的有效掺杂,并且这已经成为数十亿美元的有机发光二极管工业中的关键技术。然而,对于具有局域电子状态的有机半导体,仍然缺少关于掺杂存在下电荷传输的全面描述。在这里,我们提出一种基于渗流理论的理论和计算方法,并根据文献定量预测原型小分子材料ZnPc,F 8 ZnPc和C 60的实验结果。。我们表明,可以通过专注于传输路径的网络属性而不只是临界阻力来适当地分析因存在局部电荷而出现的复杂势能环境中的传输。具体而言,我们计算了电导率的活化能和塞贝克能,并与实验数据产生了极好的一致性。我们的方法可以澄清高掺杂浓度下活化能的以前无法解释的增加。

更新日期:2020-11-23
down
wechat
bug