当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Turbulence–chemistry interaction models with finite-rate chemistry and compressibility correction for simulation of supersonic turbulent combustion
Engineering Applications of Computational Fluid Mechanics ( IF 6.1 ) Pub Date : 2020-11-23 , DOI: 10.1080/19942060.2020.1842248
Zhouzheng Xiang 1 , Shunhua Yang 1 , Songbai Xie 1 , Ji Li 1 , Hongyu Ren 1
Affiliation  

The turbulence–chemistry interaction model with finite-rate chemistry is a common model for solving supersonic turbulent combustion and takes into consideration the interaction between turbulent mixing and chemical reactions as well as finite chemistry reaction instead of the fast chemistry assumption. However, not only the density and viscosity but also the chemical reactions are affected by the compressibility of the flow field with an increasing Mach number. Considering engineering applications, the compressibility correction was introduced to two recent turbulence–chemistry interaction models with finite-rate chemistry, the Partially Stirred Reactor (PaSR) model and Unsteady PaSR (UPaSR) model, in a Reynolds-averaged Navier–Stokes framework. Numerical simulations of two typical supersonic combustors showed that the interaction between the turbulence and combustion was intensive within complex supersonic chemical reaction flow and could be described by the fine-scale structure volume fraction. The distributions of temperature, pressure, velocity and components somewhat downstream of fuel injection areas were most obviously improved by the presented models. Moreover, the increase in computational time consumption by the compressibility correction was less than 2%. It was found that the Compressible PaSR (C-PaSR) model and the UPaSR model show better consistency with experimental results than the traditional PaSR model.



中文翻译:

湍流-化学相互作用模型,具有有限速率化学和可压缩性校正,用于模拟超音速湍流燃烧

具有有限速率化学反应的湍流-化学相互作用模型是解决超音速湍流燃烧的通用模型,它考虑了湍流混合与化学反应以及有限化学反应之间的相互作用,而不是快速化学假设。但是,随着马赫数的增加,流场的可压缩性不仅会影响密度和粘度,还会影响化学反应。考虑到工程应用,在具有雷诺数平均的Navier-Stokes框架中,将可压缩性校正引入了两个最近的具有有限速率化学反应的湍流-化学相互作用模型,即部分搅拌反应器(PaSR)模型和非稳态PaSR(UPaSR)模型。两种典型的超声速燃烧器的数值模拟表明,湍流与燃烧之间的相互作用在复杂的超声速化学反应流中是强烈的,并且可以用精细的结构体积分数来描述。所提出的模型最明显地改善了燃料喷射区域下游的温度,压力,速度和成分的分布。此外,由于压缩率校正而导致的计算时间消耗的增加小于2%。结果发现,与传统的PaSR模型相比,可压缩的PaSR(C-PaSR)模型和UPaSR模型与实验结果具有更好的一致性。所提出的模型最明显地改善了燃料喷射区域下游的温度,压力,速度和成分的分布。此外,由于压缩率校正而导致的计算时间消耗的增加小于2%。结果发现,与传统的PaSR模型相比,可压缩的PaSR(C-PaSR)模型和UPaSR模型与实验结果具有更好的一致性。所提出的模型最明显地改善了燃料喷射区域下游的温度,压力,速度和成分的分布。此外,由于压缩率校正而导致的计算时间消耗的增加小于2%。结果发现,与传统的PaSR模型相比,可压缩的PaSR(C-PaSR)模型和UPaSR模型与实验结果具有更好的一致性。

更新日期:2020-11-23
down
wechat
bug