当前位置: X-MOL 学术Adv. Healthcare Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cell‐Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D‐Printing Using Nascent Physical Hydrogel as Ink
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2020-11-23 , DOI: 10.1002/adhm.202001404
Jingming Gao 1 , Xiaoquan Ding 2 , Xiaoye Yu 1 , Xiaobin Chen 1 , Xingyu Zhang 2 , Shuquan Cui 1 , Jiayue Shi 1 , Jun Chen 2 , Lin Yu 1 , Shiyi Chen 2 , Jiandong Ding 1
Affiliation  

Cartilage is difficult to self‐repair and it is more challenging to repair an osteochondral defects concerning both cartilage and subchondral bone. Herein, it is hypothesized that a bilayered porous scaffold composed of a biomimetic gelatin hydrogel may, despite no external seeding cells, induce osteochondral regeneration in vivo after being implanted into mammal joints. This idea is confirmed based on the successful continuous 3D‐printing of the bilayered scaffolds combined with the sol‐gel transition of the aqueous solution of a gelatin derivative (physical gelation) and photocrosslinking of the gelatin methacryloyl (gelMA) macromonomers (chemical gelation). At the direct printing step, a nascent physical hydrogel is extruded, taking advantage of non‐Newtonian and thermoresponsive rheological properties of this 3D‐printing ink. In particular, a series of crosslinked gelMA (GelMA) and GelMA‐hydroxyapatite bilayered hydrogel scaffolds are fabricated to evaluate the influence of the spacing of 3D‐printed filaments on osteochondral regeneration in a rabbit model. The moderately spaced scaffolds output excellent regeneration of cartilage with cartilaginous lacunae and formation of subchondral bone. Thus, tricky rheological behaviors of soft matter can be employed to improve 3D‐printing, and the bilayered hybrid scaffold resulting from the continuous 3D‐printing is promising as a biomaterial to regenerate articular cartilage.

中文翻译:

通过使用新生的物理水凝胶作为墨水进行连续3D打印制造的用于软骨软骨再生的无细胞双层多孔支架

软骨难以自我修复,修复与软骨和软骨下骨有关的骨软骨缺损更具挑战性。在本文中,假设由仿生明胶水凝胶组成的双层多孔支架,尽管没有外部种子细胞,但在植入哺乳动物关节后可在体内诱导骨软骨再生。双层支架的成功连续3D打印,明胶衍生物水溶液的溶胶-凝胶转变(物理胶凝)和明胶甲基丙烯酰基(gelMA)大分子单体的光交联(化学胶凝)相结合,证实了这一想法。在直接打印步骤中,利用这种3D打印墨水的非牛顿性和热响应流变特性,挤出了新生的物理水凝胶。特别是,制作了一系列交联的gelMA(GelMA)和GelMA-羟基磷灰石双层水凝胶支架,以评估兔模型中3D打印丝的间距对骨软骨再生的影响。间距适中的支架输出具有软骨凹腔的软骨的出色再生,并形成软骨下骨。因此,可以利用软物质的棘手的流变行为来改善3D打印,并且连续3D打印产生的双层混合支架有望成为再生关节软骨的生物材料。间距适中的支架输出具有软骨凹腔的软骨的出色再生,并形成软骨下骨。因此,可以利用软物质的棘手的流变行为来改善3D打印,并且连续3D打印产生的双层混合支架有望成为再生关节软骨的生物材料。间距适中的支架输出具有软骨凹腔的软骨的出色再生,并形成软骨下骨。因此,可以利用软物质的棘手的流变行为来改善3D打印,并且连续3D打印产生的双层混合支架有望成为再生关节软骨的生物材料。
更新日期:2020-11-23
down
wechat
bug