当前位置: X-MOL 学术Basin Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction
Basin Research ( IF 3.2 ) Pub Date : 2020-11-22 , DOI: 10.1111/bre.12503


In ‘Denudation rates of a subequatorial orogenic belt based on estimates of sediment yields: evidence from the Paleozoic Appalachian Basin, USA’, originally published in Basin Research 29, 2–15 (2017), http://doi.org/10.1111/bre.12162, the authors have brought the following to our attention:

Discharge values in Table 2 of this manuscript are overestimated by an order of magnitude, due to an error in unit conversion. A corrected version of Table 2 is included below.

TABLE 2. Architectural element data, modern regional curve explanation and bankfull depth/discharge parameters used, and resultant estimated drainage basin areas and discharges
Formation/Member Max paleo‐channel deptha a 0.67 correction factor of Paola and Borgman (1991) applied to maximum measured channel element thickness.
(m)
Paleo‐channel depthb b Empirical equations of Bridge and Tye (2000) and Allen (1970) applied to mean cross‐bed set thickness.
(m)
Average paleo‐channel depth (m) Modern regional curve scenario Modern regional curve location Climate classification and descriptionc c Koppen climate symbols are as follows: Af, Tropical rainforest; Am, Tropical monsoon; Aw, Tropical savannah; BW, Arid Desert; BS, Arid Steppe – subscripts h and k refer to hot and cold, respectively; Cs, Temperate dry summer; Cw, Temperate dry winter; Cf, Temperate without dry season – subscripts a, b, and c refer to hot summer, warm summer, and cold summer, respectively; Ds, Cold dry summer; Dw, Cold dry winter; Df, Cold without dry season – subscripts a, b, c, and d refer to hot summer, warm summer, cold summer, and very cold winter, respectively; ET, Polar Tundra; EF, Polar Frost.
Regional curve parametersd d The coefficient (a) and exponent (b) are quoted in the original source and were computed for imperial units of measure; results have been converted to metric units.
Estimated drainage area (km2) Estimated discharge (m3/s)
Bankfull depth Discharge
Princeton 5.4 6.1 5.8 1A Pacific Maritime Mts of US Pacific Northwest coast (Castro & Jackson, 2001) Combination of cool Mediterranean (Csb) seasonal climates and Maritime Temperate (Cfb) with no seasonal variation in precipitation a = 0.66 a = 91.05 14,284 828
b = 0.39 b = 0.67
1B Western Cordillera of US Pacific Northwest coast (Castro & Jackson, 2001) Combination of Dry Summer Continental climates with seasonal precipitation (Dsa, Dsb, Dsc) to Humid Continental with no dry season (Dfb, Dfc) a = 0.61 a = 17.28 86,861 3,815
b = 0.33 b = 0.86
1C Western Interior Basin and Range of US Pacific Northwest coast (Castro & Jackson, 2001) Semi‐Arid, Steppe (BSk) climate with seasonal precipitation a = 0.79 a = 13.05 1,472,285 9,972
b = 0.24 b = 0.77
Glady Fork 4.6 4.6 2A Pacific Maritime Mts of US Pacific Northwest coast (Castro & Jackson, 2001) Combination of cool Mediterranean (Csb) seasonal climates and Maritime Temperate (Cfb) with no seasonal variation in precipitation a = 0.66 a = 91.05 7,899 551
b = 0.39 b = 0.67
2B Western Cordillera of US Pacific Northwest coast (Castro & Jackson, 2001) Combination of Dry Summer Continental climates with seasonal precipitation (Dsa, Dsb, Dsc) to Humid Continental with no dry season (Dfb, Dfc) a = 0.61 a = 17.28 43,125 2,061
b = 0.33 b = 0.86
2C Western Interior Basin and Range of US Pacific Northwest coast (Castro & Jackson, 2001) Semi‐Arid, Steppe (BSk) climate with seasonal precipitation a = 0.79 a = 13.05 562,157 4,671
b = 0.24 b = 0.77
  • a 0.67 correction factor of Paola and Borgman (1991) applied to maximum measured channel element thickness.
  • b Empirical equations of Bridge and Tye (2000) and Allen (1970) applied to mean cross‐bed set thickness.
  • c Koppen climate symbols are as follows: Af, Tropical rainforest; Am, Tropical monsoon; Aw, Tropical savannah; BW, Arid Desert; BS, Arid Steppe – subscripts h and k refer to hot and cold, respectively; Cs, Temperate dry summer; Cw, Temperate dry winter; Cf, Temperate without dry season – subscripts a, b, and c refer to hot summer, warm summer, and cold summer, respectively; Ds, Cold dry summer; Dw, Cold dry winter; Df, Cold without dry season – subscripts a, b, c, and d refer to hot summer, warm summer, cold summer, and very cold winter, respectively; ET, Polar Tundra; EF, Polar Frost.
  • d The coefficient (a) and exponent (b) are quoted in the original source and were computed for imperial units of measure; results have been converted to metric units.

While the main conclusions of the paper specifically concerning sediment yield and sediment load estimates, on which denudation rates are based, are not affected by this calculation error, the conclusions on the character of flows that supplied sediment to the basin require modification. The article originally concluded that hyperpycnal flows were rare to absent, whereas the corrected discharge estimates support occasional to frequent hyperpycnal flows. Therefore, Figure 8c in the original paper was incorrect. The corrected version of Figure 8 is below. This conclusion is consistent with the presence of some turbidite‐like deposits in the Pride Shale. Additionally, the revised discharge estimates now plot within the drainage area versus discharge envelope for modern rivers.

image
FIGURE 8
Open in figure viewerPowerPoint
Estimates of Pride river system in terms of: (a) annual sediment load; (b) mean annual sediment yield; and (c) mean annual suspended sediment concentration in comparison to global database of modern rivers from Milliman & Farnsworth (2011). Part C compares results to the hyperpycnal‐flow frequency subdivision of Mulder & Syvitski (1995). Error bars in the y‐axis direction represent a range of durations for filling the depocentre; solid line and maxima represent estimated durations, whereas dashed line extending downward to the minima represents the maximum duration of the Pride Shale (400 kyr). The range in the x‐direction represent a range of catchment area estimates. The regions of favoured estimates are shown by the blue polygons. See text for further explanation of range of uncertainties and for discussion of modern rivers shown


中文翻译:

更正

在``基于沉积物产量估算的赤道造山带的剥蚀率:来自美国古生代阿巴拉契亚盆地的证据''中,最初发表于《盆地研究》 29,2-15(2017),http://doi.org/10.1111/ bre.12162,作者提请我们注意以下内容:

由于单位转换中的误差,本手稿表2中的放电值被高估了一个数量级。表2的更正版本包括在下面。

表2.建筑元素数据,现代区域曲线说明和所使用的堤岸深度/流量参数,以及估计的流域面积和流量
编队/成员 最大古河道深度a 一个 保拉和Borgman(1991)为0.67的校正因子应用到最大测量的信道元件的厚度。
(米)
古河道深度b b Bridge和Tye(2000)和Allen(1970)的经验方程式适用于平均跨床层厚度。
(米)
平均古河道深度(m) 现代区域曲线情景 现代区域曲线位置 气候分类与描述c c科 彭的气候符号如下:Af,热带雨林;上午,热带季风;啊,热带大草原;BW,干旱沙漠;BS,干旱草原–下标h和k分别指热和冷。Cs,夏季温和干燥;Cw,温带干燥的冬季;Cf,无旱温带–下标a bc分别表示炎热的夏天,温暖的夏天和寒冷的夏天;Ds,夏季寒冷干燥;Dw,冬天寒冷干燥;Df,无旱季的寒冷–下标a b cd分别指炎热的夏天,温暖的夏天,寒冷的夏天和非常寒冷的冬天;ET,极地苔原;EF,极地霜冻。
区域曲线参数d d 系数(a)和指数(b)在原始资料中被引用,并以英制计量单位计算;结果已转换为公制单位。
预计流域面积(km 2 估计流量(m 3 / s)
银行深度 卸货
普林斯顿 5.4 6.1 5.8 1A 美国太平洋西北海岸的太平洋海山(Castro&Jackson,2001) 凉爽的地中海(Cs b)季节气候和海洋温带气候(Cf b)相结合,且降水没有季节性变化 a = 0.66 一个= 91.05 14,284 828
b = 0.39 b = 0.67
1B 美国太平洋西北海岸的西部山脉(Castro&Jackson,2001) 夏季大陆性干旱气候与季节性降水(Ds a,Ds b,Ds c)组合到湿润大陆性无干旱季节(Df b,Df c a = 0.61 一个= 17.28 86,861 3,815
b = 0.33 b = 0.86
1C 西部内陆盆地和美国太平洋西北海岸的山脉(Castro和Jackson,2001年) 半干旱,草原(BSk)气候,季节性降水 a = 0.79 一个= 13.05 1,472,285 9,972
b = 0.24 b = 0.77
格莱迪叉 4.6 4.6 2A 美国太平洋西北海岸的太平洋海山(Castro&Jackson,2001) 凉爽的地中海(Cs b)季节气候和海洋温带气候(Cf b)相结合,且降水没有季节性变化 a = 0.66 一个= 91.05 7,899 551
b = 0.39 b = 0.67
2B 美国太平洋西北海岸的西部山脉(Castro&Jackson,2001) 夏季大陆性干旱气候与季节性降水(Ds a,Ds b,Ds c)组合到湿润大陆性无干旱季节(Df b,Df c a = 0.61 一个= 17.28 43,125 2,061
b = 0.33 b = 0.86
2C 西部内陆盆地和美国太平洋西北海岸的山脉(Castro和Jackson,2001年) 半干旱,草原(BSk)气候,季节性降水 a = 0.79 一个= 13.05 562,157 4,671
b = 0.24 b = 0.77
  • 一个 保拉和Borgman(1991)为0.67的校正因子应用到最大测量的信道元件的厚度。
  • b Bridge和Tye(2000)和Allen(1970)的经验方程式适用于平均跨床层厚度。
  • c科 彭的气候符号如下:Af,热带雨林;上午,热带季风;啊,热带大草原;BW,干旱沙漠;BS,干旱草原–下标h和k分别指热和冷。Cs,夏季温和干燥;Cw,温带干燥的冬季;Cf,无旱温带–下标a bc分别表示炎热的夏天,温暖的夏天和寒冷的夏天;Ds,夏季寒冷干燥;Dw,冬天寒冷干燥;Df,无旱季的寒冷–下标a b cd分别指炎热的夏天,温暖的夏天,寒冷的夏天和非常寒冷的冬天;ET,极地苔原;EF,极地霜冻。
  • d 系数(a)和指数(b)在原始资料中被引用,并以英制计量单位计算;结果已转换为公制单位。

尽管本文的主要结论(具体涉及基于剥蚀率的沉积物产量和沉积物负荷估算)不受此计算误差的影响,但有关将沉积物供应到流域的流量特征的结论仍需修改。该文章最初得出结论,很少会出现高脓血流量,而校正后的出院估计值支持偶尔出现高尿酸流量。因此,原始纸张中的图8c不正确。下面是图8的更正版本。这一结论与Pride页岩中存在一些类似浊石的沉积物是一致的。此外,修订后的流量估算现在绘制在流域内与现代河流的流量范围之间。

图片
图8
在图形查看器中打开微软幻灯片软件
对普赖德河系统的估算包括:(a)每年的泥沙负荷;(b)年平均沉积物产量;(c)与Milliman&Farnsworth(2011)的全球现代河流全球数据库相比,年悬浮泥沙的平均浓度。C部分将结果与Mulder&Syvitski(1995)的高次流频率细分进行比较。y轴上的误差线表示填充偏心距的持续时间范围;实线和最大值表示估计的持续时间,而向下延伸到最小值的虚线表示Pride页岩的最大持续时间(400年)。x方向上的范围表示流域面积估计值的范围。有利估计的区域由蓝色多边形显示。参见文本,了解不确定性范围的进一步说明以及所展示的现代河流的讨论
更新日期:2020-11-22
down
wechat
bug