当前位置: X-MOL 学术Sci. Total Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emissions and Potential Controls of Light Alkenes from the Marginal Seas of China
Science of the Total Environment ( IF 9.8 ) Pub Date : 2020-11-21 , DOI: 10.1016/j.scitotenv.2020.143655
Jian-Long Li , Xing Zhai , Ying-Cui Wu , Jian Wang , Hong-Hai Zhang , Gui-Peng Yang

Marine-derived reactive gases constitute a substantial fraction of volatile organic compounds and directly impact atmospheric chemistry and the global climate. Light alkene emissions from marginal seas are limited, and their contribution to atmospheric concentrations is likely underestimated. We surveyed oceanic emissions of ethylene, propylene, and isoprene, as well as their potential controlling factors in the marginal seas of China during the cruises in 2014–2015. Significant temporal-spatial variations in ethylene, propylene, and isoprene concentrations were observed, with the highest occurring in summer near the coastal regions. Isoprene concentrations were primarily controlled by phytoplankton biomass (i.e., Chl-a) in coastal regions, while the elevated concentrations of ethylene and propylene were attributed to photochemical reactions with the high levels of dissolved organic matter (DOM). Additionally, the vertical distributions of ethylene and propylene mirrored light penetration, with exponential decrease in concentrations with depth. However, there were high values of ethylene and propylene observed at deep chlorophyll maximum, suggesting the existence of non-photochemical production pathways, most likely biological origin. Emissions of ethylene, propylene, and isoprene from the marginal seas of China were estimated to be 0.022, 0.024, and 0.011 Tg C yr-1, respectively, indicating they are important contributors to global non-methane hydrocarbons. Due to the scarcity of alkene emission data for marginal seas, current global emissions have been underestimated to some extent. It is essential to incorporate the contributions from marginal seas to accurately estimate alkene budgets on global scales.

更新日期:2020-11-22
down
wechat
bug