当前位置: X-MOL 学术Opt. Fiber Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-precision calibration method for fiber Bragg grating strain sensing based on an optical lever
Optical Fiber Technology ( IF 2.7 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.yofte.2020.102392
Ruoshui Tan , Chen Chen , Yongqiu Zheng , Jiamin Chen , Liyun Wu

Abstract The high-precision strain calibration of a fiber Bragg grating (FBG) is critical to the engineering application of fiber grating sensors. In this paper, a strain calibration method based on the optical lever is proposed for the FBG sensor. The optical lever is used to measure a tiny displacement through optical amplification. Comparing with traditional strain calibration using a beam structure and strain gauge as the medium, the proposed method avoids problems of low sensitivity and stress transfer. The strain of an FBG was calibrated using an optical lever through theoretical analysis and experimentation. The principle of strain sensing and calibration is presented for the FBG to further study strain calibration of the FBG. The FBG strain is calibrated at a room temperature of 26 °C and the sensitivity of the FBG strain calibration is 1.13 pm/ μ e . The effect of the temperature on strain calibration of the FBG using the optical lever is explored and the temperature of the FBG is controlled using a temperature control module to control the temperature of the thermoelectric cooler. The temperature of the thermoelectric cooler is not controlled in a stable manner, and the relationship among the central wavelength, temperature, and strain in the experiment is thus affected by the room temperature, which is not ideal. In future work, temperature compensation can be adopted to make the calibration of the FBG more accurate. Strain calibration using the optical lever method is clearly more accurate than previous strain calibration methods.

中文翻译:

基于光学杠杆的光纤布拉格光栅应变传感高精度标定方法

摘要 光纤布拉格光栅(FBG)的高精度应变校准对于光纤光栅传感器的工程应用至关重要。本文提出了一种基于光学杠杆的光纤光栅传感器应变标定方法。光学杠杆用于通过光学放大测量微小位移。与传统的以梁结构和应变计为介质的应变校准相比,该方法避免了灵敏度低和应力传递的问题。通过理论分析和实验,使用光学杠杆校准 FBG 的应变。提出了FBG的应变传感和校准原理,以进一步研究FBG的应变校准。FBG 应变在室温 26 °C 下校准,FBG 应变校准的灵敏度为 1。13 pm/μe。探索了温度对使用光学杠杆的 FBG 应变校准的影响,并使用温度控制模块来控制 FBG 的温度,以控制热电冷却器的温度。热电冷却器的温度控制不稳定,实验中的中心波长、温度和应变之间的关系因此受室温影响,不理想。在未来的工作中,可以采用温度补偿来使FBG的校准更加准确。使用光学杠杆法的应变校准显然比以前的应变校准方法更准确。探索了温度对使用光学杠杆的 FBG 应变校准的影响,并使用温度控制模块来控制 FBG 的温度,以控制热电冷却器的温度。热电冷却器的温度控制不稳定,实验中的中心波长、温度和应变之间的关系因此受室温影响,不理想。在未来的工作中,可以采用温度补偿来使FBG的校准更加准确。使用光学杠杆法的应变校准显然比以前的应变校准方法更准确。探索了温度对使用光学杠杆的 FBG 应变校准的影响,并使用温度控制模块来控制 FBG 的温度,以控制热电冷却器的温度。热电冷却器的温度控制不稳定,实验中的中心波长、温度和应变之间的关系因此受室温影响,不理想。在未来的工作中,可以采用温度补偿来使FBG的校准更加准确。使用光学杠杆法的应变校准显然比以前的应变校准方法更准确。热电冷却器的温度控制不稳定,实验中的中心波长、温度和应变之间的关系因此受室温影响,不理想。在未来的工作中,可以采用温度补偿来使FBG的校准更加准确。使用光学杠杆法的应变校准显然比以前的应变校准方法更准确。热电冷却器的温度控制不稳定,实验中的中心波长、温度和应变之间的关系因此受室温影响,不理想。在未来的工作中,可以采用温度补偿来使FBG的校准更加准确。使用光学杠杆法的应变校准显然比以前的应变校准方法更准确。
更新日期:2020-11-01
down
wechat
bug