当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Artificial multimodal receptors based on ion relaxation dynamics
Science ( IF 56.9 ) Pub Date : 2020-11-19 , DOI: 10.1126/science.aba5132
Insang You 1, 2, 3 , David G. Mackanic 2 , Naoji Matsuhisa 2 , Jiheong Kang 2 , Jimin Kwon 3 , Levent Beker 2 , Jaewan Mun 2 , Wonjeong Suh 1 , Tae Yeong Kim 1 , Jeffrey B.-H. Tok 2 , Zhenan Bao 2 , Unyong Jeong 1
Affiliation  

Feeling temperature and touch The range of receptors in our skin make it possible to sense when we are touching an object and also gives us a general sense of the temperature of that object. Achieving this in an artificial skin-like material has been a challenge because most of the approaches for sensing touch are themselves temperature sensitive. You et al. studied the ion relaxation dynamics in a conductive elastomeric film (see the Perspective by Liu). They show that the ion relaxation time can be used as a strain-insensitive intrinsic variable for detecting temperature and the capacitance can be used as a temperature-insensitive extrinsic variable for sensing the strain, thus decoupling the two so that their signals do not interfere with each other. Science, this issue p. 961; see also p. 910 Real-time acquisition of ion relaxation time enables sensing of strain and temperature in stretchable artificial receptors. Human skin has different types of tactile receptors that can distinguish various mechanical stimuli from temperature. We present a deformable artificial multimodal ionic receptor that can differentiate thermal and mechanical information without signal interference. Two variables are derived from the analysis of the ion relaxation dynamics: the charge relaxation time as a strain-insensitive intrinsic variable to measure absolute temperature and the normalized capacitance as a temperature-insensitive extrinsic variable to measure strain. The artificial receptor with a simple electrode-electrolyte-electrode structure simultaneously detects temperature and strain by measuring the variables at only two measurement frequencies. The human skin–like multimodal receptor array, called multimodal ion-electronic skin (IEM-skin), provides real-time force directions and strain profiles in various tactile motions (shear, pinch, spread, torsion, and so on).

中文翻译:

基于离子弛豫动力学的人工多模态受体

感觉温度和触觉我们皮肤中的受体范围使我们可以在触摸物体时进行感知,并且还可以让我们大致了解该物体的​​温度。在人造皮肤状材料中实现这一点一直是一个挑战,因为大多数感知触摸的方法本身都是温度敏感的。你等人。研究了导电弹性膜中的离子弛豫动力学(参见 Liu 的观点)。他们表明,离子弛豫时间可以用作检测温度的应变不敏感内在变量,而电容可以用作检测应变的温度不敏感外在变量,从而将两者解耦,使其信号不会干扰彼此。科学,这个问题 p。961; 另见第 910 离子弛豫时间的实时采集能够感知可拉伸人工受体中的应变和温度。人体皮肤具有不同类型的触觉感受器,可以区分各种机械刺激和温度。我们提出了一种可变形的人工多模态离子受体,可以在没有信号干扰的情况下区分热和机械信息。从离子弛豫动力学的分析中得出两个变量:电荷弛豫时间作为测量绝对温度的应变不敏感内在变量,以及作为测量应变的温度不敏感外在变量的归一化电容。具有简单电极-电解质-电极结构的人工受体通过仅在两个测量频率下测量变量来同时检测温度和应变。
更新日期:2020-11-19
down
wechat
bug