当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Channel Impulse Analysis of Light Propagation for Point-to-point Nano Communications through Cortical Neurons
IEEE Transactions on Communications ( IF 8.3 ) Pub Date : 2020-11-01 , DOI: 10.1109/tcomm.2020.3012477
Stefanus Wirdatmadja , Josep Miquel Jornet , Yevgeni Koucheryavy , Sasitharan Balasubramaniam

Recent Brain-Machine Interfaces have moved towards miniature devices that can be seamlessly integrated into the cortex. In this paper, we propose communication between miniature devices using light. A number of challenges exist using nanoscale light-based communication and this includes diffraction, scattering, and absorption, where these properties result from the tissue medium as well as the cell’s geometry. Under these effects, the paper analyses the propagation path loss and geometrical gain, channel impulse and frequency response through a line of neurons with different shapes. Our study found that the light attenuation depends on the propagation path loss and geometrical gain, while the channel response is highly dependent on the quantity of cells along the path. Additionally, the optical properties of the medium impact the time delay at the receiver and the width and the location of the detectors. Simulations were conducted for cells that are lined horizontally up to a distance of $450~\mu \text{m}$ using light wavelength of 456 nm and different neuron densities (men’s neocortex (25924(±15110) /mm3) and women’s (27589(±16854) /mm3)). Based on the simulations, we found that spherical cells attenuate approximately 20% of the transmitted power compared to the fusiform and pyramidal cells (35% and 65%, respectively).

中文翻译:

通过皮层神经元进行点对点纳米通信的光传播的信道脉冲分析

最近的脑机接口已经转向可以无缝集成到皮层的微型设备。在本文中,我们提出了使用光在微型设备之间进行通信。使用基于纳米级光的通信存在许多挑战,这包括衍射、散射和吸收,其中这些特性是由组织介质和细胞的几何形状引起的。在这些影响下,论文通过一排不同形状的神经元分析了传播路径损耗和几何增益、信道脉冲和频率响应。我们的研究发现,光衰减取决于传播路径损耗和几何增益,而信道响应高度依赖于沿路径的细胞数量。此外,介质的光学特性会影响接收器的时间延迟以及检测器的宽度和位置。使用 456 nm 的光波长和不同的神经元密度(男性的新皮层 (25924(±15110) /mm3)和女性的 (27589) (±16854) /mm3))。基于模拟,我们发现与梭形和锥体细胞(分别为 35% 和 65%)相比,球形细胞衰减了大约 20% 的传输功率。
更新日期:2020-11-01
down
wechat
bug