当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Epitaxial halide perovskite-based materials for photoelectric energy conversion
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2020-11-3 , DOI: 10.1039/d0ee02902e
Ziren Zhou 1, 2, 3, 4, 5 , Hong Wei Qiao 1, 2, 3, 4, 5 , Yu Hou 1, 2, 3, 4, 5 , Hua Gui Yang 1, 2, 3, 4, 5 , Shuang Yang 1, 2, 3, 4, 5
Affiliation  

Metal halide perovskites (MHP) are an emerging class of semiconducting materials with superior optoelectronic properties, which have achieved notable success in photoelectric device applications. As a classical technique in the semiconductor industry, epitaxy has indeed advanced the perovskite technology in the recent years by enabling the material combinations with a coherent interfacial lattice as well as combined complementary functionalities, which are not available in the single-phase constituents. In this review, we start with the basic principles and chemical techniques for the epitaxial growth of MHP-based materials. We summarize the epitaxial structures of perovskite solids, which are categorized by the combined materials and compare their performance in photoelectric devices including solar cells, photodetectors, and light-emitting diodes (LEDs). The impact of lattice strain and band structure at the substrate/perovskite interface, which can affect the energy conversion process, are then discussed after the epitaxial cases. We finally outline the future directions for perovskite epitaxy, targeting the in situ monitoring of the surface atomic kinetics during the growth, precise interfacial structure characterization, and the upscaling fabrications, which might further benefit the performance and application of perovskite-based devices.

中文翻译:

外延卤化物钙钛矿基材料用于光电能量转换

钙钛矿金属卤化物(MHP)是一类新兴的半导体材料,具有优异的光电性能,在光电器件应用中取得了显著成就。作为半导体工业中的一种经典技术,外延技术近年来确实通过使具有相干界面晶格的材料组合以及组合的互补功能实现了钙钛矿技术的进步,而单相成分中尚无此功能。在这篇综述中,我们从外延生长基于MHP的材料的基本原理和化学技术入手。我们总结了钙钛矿固体的外延结构,将其按组合材料进行分类,并比较它们在包括太阳能电池,光电探测器,和发光二极管(LED)。然后在外延情况之后讨论晶格应变和能带结构在衬底/钙钛矿界面上的影响,该影响会影响能量转换过程。我们最终概述了钙钛矿外延的未来方向,针对生长过程中对表面原子动力学进行原位监测,精确的界面结构表征以及按比例放大的制造工艺,这可能进一步有利于钙钛矿基设备的性能和应用。
更新日期:2020-12-17
down
wechat
bug