当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Few-Layer In2S3 in Laponite Interlayers: A Colloidal Route Toward Heterostructured Nanohybrids with Enhanced Photocatalysis
Chemistry of Materials ( IF 8.6 ) Pub Date : 2020-11-19 , DOI: 10.1021/acs.chemmater.0c03207
Junying Liu 1 , Sanjay Jatav 1 , Eric H. Hill 1, 2
Affiliation  

2D nanomaterials are emerging rapidly because of their exceptional chemical and physical properties. Reducing the thickness or number of crystalline layers improves the catalytic performance of many semiconductors, and thus, different exfoliation strategies have been proposed. However, many exfoliation methods can cause damage or chemical modifications, and control over size and aggregation can be problematic. Herein, In2S3 was grown in the surfactant-modified interlayer space of the layered silicate clay Laponite, leading to a hybrid nanostructure containing 1–1.5 nm thick lamellae of In2S3. The synthetic parameters varied the thickness and regularity of the In2S3 layers, and drastic changes in photophysical properties were observed, underlining the importance of colloidal interactions for templated growth. Photocurrent measurements and photocatalysis experiments showed that more than an order of magnitude increased apparent quantum efficiency and internal photon to current conversion efficiency over In2S3. This was attributed to fast interfacial charge transfer, enhanced redox capability, and improved charge transport properties of the In2S3 layers because of reduced layer thickness and isolation by magnesiosilicate nanoclay in between. Overall, this study provides a simple colloidal approach to grow defined layered heterostructures of In2S3 with limited thickness and enhanced photophysical properties, allowing improved catalysis. The photocatalytic enhancement, facile synthesis, and increased product yield compared with pure In2S3 make these promising materials for energy conversion and environmental remediation.

中文翻译:

层积皂石层中2 S 3中的少量层:胶体路径向具有增强光催化作用的异质结构纳米杂化物

二维纳米材料由于其卓越的化学和物理性能而迅速兴起。减少晶体层的厚度或数量可改善许多半导体的催化性能,因此,提出了不同的剥离策略。但是,许多剥落方法可能会导致损坏或化学修饰,并且尺寸和聚集的控制可能会成问题。在这里,In 2 S 3在层状硅酸盐粘土Laponite的表面活性剂改性的层间空间中生长,从而形成了包含1–1.5 nm厚的In 2 S 3薄片的杂化纳米结构。合成参数改变了In 2 S 3的厚度和规则性层,并观察到光物理性质的急剧变化,强调胶体相互作用对模板生长的重要性。光电流测量和光催化实验表明,与In 2 S 3相比,表观量子效率和内部光子电流转换效率提高了一个数量级以上。这归因于In 2 S 3层的快速界面电荷转移,增强的氧化还原能力和改进的电荷传输性能,这是由于减小的层厚度和之间的镁硅酸盐纳米粘土隔离所致。总的来说,这项研究提供了一种简单的胶体方法来生长In 2 S 3的确定的分层异质结构具有有限的厚度和增强的光物理性质,可以改善催化作用。与纯In 2 S 3相比,光催化增强,易于合成和增加的产品收率使这些材料有望用于能量转换和环境修复。
更新日期:2020-12-08
down
wechat
bug