当前位置: X-MOL 学术Int. J. Chem. React. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reactor engineering calculations with a detailed reaction mechanism for the oxidative coupling of methane
International Journal of Chemical Reactor Engineering ( IF 1.6 ) Pub Date : 2020-11-16 , DOI: 10.1515/ijcre-2020-0138
Sonya Rivera 1 , Andrin Molla 1 , Phillip Pera 1 , Michael Landaverde 1 , Robert Barat 1
Affiliation  

Abstract The oxidative coupling of methane (OCM) is a potential option for conversion of excess natural gas to higher value products or useful feedstocks. The preferred or ideal OCM stoichiometry is: 2CH4 + O2 → C2H4 + 2H2O, but real OCM produces a variety of species. Using a detailed mechanism from the literature for OCM over a La2O3/CeO2 catalyst that combines coupled elementary gas phase and surface reactions, a reactor engineering study has been done. Adiabatic packed bed reactor (PBR, modeled as plug flow) and continuous stirred tank reactor (CSTR, perfect mixing) simulations using this mechanism are presented. Each reactor simulation used the same total number of catalyst sites. Process variables included CH4/O2 feed ratio (7, 11), feed temperature (843–1243 K), and feed rate. All runs were conducted at 1.01E5 Pa pressure. The results show the CSTR produces high conversions at much lower feed temperatures than those required by the PBR. Once full PBR “light off” occurs, however, its CH4 conversions exceed CSTR. The simulations reveal OCM over this catalyst at these conditions gives a mixture of synthesis gas (CO, H2) and C2Hx (primarily C2H4 plus small quantities of C2H6 and C2H2). The CSTR favors the production of synthesis gas, while the PBR favors C2Hx. Within the suite of CSTR cases, C2Hx is favored at the lowest feed temperature and highest CH4/O2 feed ratio.

中文翻译:

反应器工程计算以及甲烷氧化偶联的详细反应机理

摘要 甲烷氧化偶联 (OCM) 是将过量天然气转化为更高价值产品或有用原料的潜在选择。优选或理想的 OCM 化学计量是:2CH4 + O2 → C2H4 + 2H2O,但真正的 OCM 会产生多种物质。使用文献中关于 OCM 的详细机理,在结合了基本气相和表面反应的 La2O3/CeO2 催化剂上,已经完成了反应器工程研究。介绍了使用这种机制的绝热填充床反应器(PBR,模拟为活塞流)和连续搅拌釜反应器(CSTR,完美混合)模拟。每个反应器模拟使用相同总数的催化剂位点。过程变量包括 CH4/O2 进料比 (7, 11)、进料温度 (843–1243 K) 和进料速率。所有运行均在 1.01E5 Pa 压力下进行。结果表明,CSTR 在比 PBR 所需的进料温度低得多的进料温度下产生高转化率。然而,一旦完全 PBR“熄灯”发生,其 CH4 转换将超过 CSTR。模拟结果显示,在这些条件下,该催化剂上的 OCM 产生合成气(CO、H2)和 C2Hx(主要是 C2H4 加上少量 C2H6 和 C2H2)的混合物。CSTR 有利于合成气的生产,而 PBR 有利于 C2Hx。在 CSTR 案例套件中,C2Hx 在最低进料温度和最高 CH4/O2 进料比下受到青睐。H2) 和 C2Hx(主要是 C2H4 加上少量的 C2H6 和 C2H2)。CSTR 有利于合成气的生产,而 PBR 有利于 C2Hx。在 CSTR 案例套件中,C2Hx 在最低进料温度和最高 CH4/O2 进料比下受到青睐。H2) 和 C2Hx(主要是 C2H4 加上少量的 C2H6 和 C2H2)。CSTR 有利于合成气的生产,而 PBR 有利于 C2Hx。在 CSTR 案例套件中,C2Hx 在最低进料温度和最高 CH4/O2 进料比下受到青睐。
更新日期:2020-11-16
down
wechat
bug