当前位置: X-MOL 学术Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring the development of nanocomposite encapsulation solutions for enhancing the efficiency of PV systems using optical modelling
Optical Materials ( IF 3.9 ) Pub Date : 2020-11-20 , DOI: 10.1016/j.optmat.2020.110654
James Walshe , Mihaela Girtan , Sarah McCormack , John Doran , George Amarandei

Plasmon enhanced luminescent down-shifting (PLDS) represents a passive design strategy in which the narrow spectral responsivity of photovoltaics (PVs) is increased through the application of a semi-transparent, fluorescent, polymer nanocomposite encapsulation. However, the additional loss pathways facilitated through the integration of the PLDS layer into the optical system must be overcome for the retrofitted structure to offer an enhancement to the underlying PV-device. In this study, through exploiting the antireflection properties of thin films and PLDS coatings, some of these loss mechanisms were addressed using a transfer matrix model. Two initial designs of this structure enhanced (SE) PLDS architecture were developed for a monocrystalline silicon (mc-Si) PV device using Ag nanoparticles to modify the properties of the poly (methyl-methacrylate) - PMMA encapsulation and antireflection coatings (ARC). Through the careful consideration of the composition and optical thickness of the ARC and the position at which it is integrated within the stratified SE-PLDS architecture, a 52% enhancement of the photocurrent is predicted to be produced, as compared to the conventional PV-device. Reducing the SE-PLDS layer's thickness further extended the improvement up to a 55% total enhancement in the mc-Si cell electrical generating capacity, even in the absence of plasmon assisted photoluminescence.



中文翻译:

探索使用光学建模提高光伏系统效率的纳米复合封装解决方案的开发

等离子体增强发光下移(PLDS)代表了一种被动设计策略,其中通过应用半透明的荧光聚合物纳米复合材料封装来提高光伏电池(PVs)的窄光谱响应度。但是,必须克服通过PLDS层集成到光学系统中而促进的其他损耗路径,以进行翻新结构以增强基础PV器件的性能。在这项研究中,通过利用薄膜和PLDS涂层的抗反射特性,使用传输矩阵模型解决了其中一些损耗机理。针对单晶硅(mc-Si)PV器件开发了这种结构增强(SE)PLDS体系结构的两个初始设计,该器件使用Ag纳米颗粒来修改聚(甲基丙烯酸甲酯)的特性-PMMA封装和减反射涂层(ARC)。通过仔细考虑ARC的成分和光学厚度以及在分层SE-PLDS体系结构中集成的位置,与传统的PV设备相比,预计将产生52%的光电流增强。减少SE-PLDS层的厚度,即使在没有等离激元辅助的光致发光的情况下,mc-Si电池发电能力的总提高也进一步扩大到55%。通过仔细考虑ARC的成分和光学厚度以及在分层SE-PLDS体系结构中集成的位置,与传统的PV设备相比,预计将产生52%的光电流增强。减少SE-PLDS层的厚度,即使在没有等离子体激元辅助的光致发光的情况下,mc-Si电池发电能力的总体提高也达到了55%。通过仔细考虑ARC的成分和光学厚度以及在分层SE-PLDS体系结构中集成的位置,与传统的PV设备相比,预计将产生52%的光电流增强。减少SE-PLDS层的厚度,即使在没有等离子体激元辅助的光致发光的情况下,mc-Si电池发电能力的总体提高也达到了55%。

更新日期:2020-11-21
down
wechat
bug