当前位置: X-MOL 学术Measurement › 论文详情
A robust fault diagnosis approach for large-scale production process
Measurement ( IF 3.364 ) Pub Date : 2020-11-20 , DOI: 10.1016/j.measurement.2020.108737
Zhenyu Deng; Chenggen Quan; Fajie Duan

Due to the importance and dangerousness of large-scale production processes, the accuracy and reliability of fault diagnosis approaches are critical for safe operation. In this paper, a robust fault diagnosis approach is proposed to realize the reliable classification while ensuring high accuracy. The feature importance distribution is proposed to select appropriate dimension reduction methods, and the real data structure is remained by the same-scale standardization and same-criterion dimension reduction. By means of the whole procedure optimization for datasets and classifiers, the performances of traditional Support Vector Machine and Naive Bayes can achieve the level of ensemble learning. Next the parallel classifier which consists of different classification theories is able to improve the reliability of final prediction. Experimental results show that the proposed approach outperforms the traditional approaches with accuracy that exceeds 92% for Tennessee Eastman benchmark (18 faults) and exceeds 87% for a real-world three-phase flow process (2 faults).

更新日期:2020-11-21
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
胡少伟
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug