当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Denudation history and palaeogeography of the Pyrenees and their peripheral basins: an 84-million-year geomorphological perspective
Earth-Science Reviews ( IF 9.724 ) Pub Date : 2020-11-21 , DOI: 10.1016/j.earscirev.2020.103436
Marc Calvet; Yanni Gunnell; Bernard Laumonier

This review provides a synthesis of the evolution of the Pyrenees since ~84 Ma and is uniquely focused on analysing jointly and comparatively its peripheral pro-foreland, retro-foreland and Mediterranean basins. The reconstructions adopt a geomorphological perspective focused on the waxing and waning of palaeorelief, and is underpinned by (i) the denudation history of the mountain belt encoded in the sedimentary record of its basins, (ii) rock-cooling histories inferred from low-temperature thermochronology, and (iii) the age and spatial distribution of tectonic and erosional landforms. Existing geological reconstructions of the Pyrenees commonly terminate at the end of the syntectonic collision period (early Miocene). Here, the no-less eventful post-shortening period of the last 25–30 m.y. is also addressed. Accordingly, emphasis is given to the record provided by nonmarine clastic sequences, and to the often understated depositional biochronology documented by the continental fossils they contain. Sedimentological and provenance analysis of coarse clastic deposits further documents the fine-scale palaeogeography of sources and sinks, and is correlated with different generations of eustatic, tectonic, and volcanic features, as well as extant populations of land surfaces such as rock pediments, palaeovalleys, and other landforms indicative of palaeoelevation and palaeotopography. These interconnected and age-bracketed diagnostic features are correlated with independent evidence concerning the structural evolution of the orogenic belt at crustal and lithospheric scale. They show that the Ancestral (i.e., Paleogene) Pyrenees were in many aspects dissimilar to the successor mountain range we observe today. They also suggest that, despite its prima facie topographic continuity from the Mediterranean to the Atlantic, the modern mountain range, particularly in its eastern half, is in a transient topographic state. This would appear to have been driven by large-scale asthenospheric flows contributing to regional uplift and erosion of not just the mountain range but also its foreland basins during the last ~12 m.y.

更新日期:2020-11-21
全部期刊列表>>
美国矿物金属材料学期刊
地学环境科学SCI期刊
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
朱守非
南方科技大学
杨财广
内蒙古大学
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug