当前位置: X-MOL 学术Earth Planet. Sci. Lett. › 论文详情
Overspilling small craters on a dry Mars: Insights from breach erosion modeling
Earth and Planetary Science Letters ( IF 4.823 ) Pub Date : 2020-11-19 , DOI: 10.1016/j.epsl.2020.116671
A.O. Warren; S. Holo; E.S. Kite; S.A. Wilson

Understanding when, where, and how frequently liquid water was stable on Mars since the Late Noachian/Early Hesperian (3.2-3.9 Ga) is important for understanding the evolution of Mars' climate and hydrology. Some relatively young features on Mars require multiple wetting events to form, whereas others are consistent with single wetting events. Small and rare exit breach craters or “pollywogs” are craters between 0.5 and 15 km in diameter with valleys leading away from the lowest point on their rims but no visible inlet valleys. These craters must have been filled with water to the point of overspill to form the observed valleys. The two possible water sources are precipitation and groundwater. In this paper we use measurements from Digital Elevation Models (DEMs) of 18 pollywog craters (21 outlet valleys) and a fixed channel width 0-D breach erosion model to determine whether pollywog exit breach valleys are consistent with a single crater overspill event, or if their formation requires multiple overspill events. Our model, which we compare to a selection of dam breaching events on Earth, predicts runaway erosion for two pollywog exit breaches. No runaway erosion is observed. We discuss potential explanations for this mismatch between the data and our model. We show that the majority of pollywog craters on Mars are consistent with formation during a single crater overspill event, incorporating a work around for the long-standing problem of unknown grainsize into our approach. Three pollywog craters require either multiple events or sustained water supply to drive erosion. We discuss potential source mechanisms for crater-filling water and conclude that pollywogs either formed in a single erosion event, driven by groundwater discharge, or through many small erosion events, driven by draining of small meltwater lakes formed on crater-filling bodies of ice.

更新日期:2020-11-21
全部期刊列表>>
施普林格,自然编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
林亮
南方科技大学
朱守非
华东师范大学
胡少伟
有机所林亮
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug